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Abstract—nowadays automatic methods based on artificial 
intelligence are rapidly growing. In the paper, a problem of 
automatic target recognition in synthetic aperture radar 
images is described. It is demonstrated, that two different 
machine learning instruments can provide very high 
classification accuracy. In particular, support vector machines 
with proper optimization and developed local feature set gives 
competitive results. Secondly, a novel architecture of 
convolutional neural network is proposed. Important practical 
aspects of both methods are analyzed. Experimental results for 
MSTAR are given.  
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I. INTRODUCTION 
Various intelligence systems are very popular nowadays. 

A key of automatic decision making is related with 
application of proper artificial intelligence (AI) algorithms. 
Computer vision and machine learning are two most used 
groups of applied techniques.  

In the paper, the problem of automatic target recognition 
(ATR) in synthetic aperture radar (SAR) images is analyzed. 
Unlike to optical imagery, radar imaging has some 
peculiarities. In particular, speckle noise significantly 
complicates the information extraction process [1]. 

Brief analysis of existing literature indicates that ATR is 
quite old [2]-[3], but still very popular topic [4]-[6]. Different 
feature types, classifiers, image processing methods have 
been developed [7]. In [8] principal component analysis 
(PCA), independent component analysis (ICA) and Hu 
moment invariants were tested together with several 
classifiers: linear discriminant classifier (LDC), quadratic 
discriminant classifier (QDC), k-nearest neighbors (k-NN) 
and support vector machines (SVM). Comparative analysis 
was performed. In [9] cepstrum coefficients features were 
utilized as a feature vectors for ATR. In [10] Bayesian 
compressive sensing (BCS) technique was applied with 
scattering centers features. High-resolution range profiles 
were used in [11]. An example of appearance-based model 
was proposed in [12]. It was shown that competitive 

accuracy can be achieved with low dimensional feature 
vectors. 

A special group of methods for SAR ATR is related with 
convolutional neural networks (CNNs). There is a high 
research trend in this field nowadays [4]-[6]. In this case, 
proper network architecture creation is the main question. In 
[5] it as shown that CNN can be used for target detection as 
well.  

There are three main steps for SAR ATR (Fig. 1). 

 
Figure 1. Key steps of ATR. 

Firstly, detector is applied for extraction of target candidates. 
[2]-[3]. After that discriminator is applied. This is considered 
as a low-level binary classification. As a result, false 
positives such as buildings, trees and clutter are rejected. 
Finally, high-level classification is performed. As a result, 
target types are automatically determined. In this study, the 
classification step is investigated. In particular, we 
comprehensively analyze the potential of two different 
machine learning techniques: SVM and CNN. We 
demonstrate how to achieve high recognition accuracy using 
both techniques. It is shown, that proper tuning of features 
and SVM classifier optimization allows to increase the 
classification potential. In addition, we propose a novel 
CNN architecture giving outstanding ATR performance.  

Section II contains the information about SVM and 
CNN. In particular, proposed feature sets and network layers 
description is given. Optimization steps and experimental 
results are discussed in section III. 

II. MACHINE LEARNING TOOLS AND FEATURE 
EXTRACTION 

This section contains an information about chosen 
machine learning tools: SVM and CNN. 
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A. Support Vector Machines and Custom Features 
SVM is widely used technique for such tasks as 

pedestrian detection, handwritten text recognition [13], face 
recognition [14], etc. Initially this method was developed for 
a binary classification problem. The principle of SVM is to 
find the optimal separating hyperplane between two classes 
(Fig. 2). 
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Figure 2. SVM principle. 

The optimization problem is considered in a so-called 
soft-margin formulation [15].  
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where ix  is a feature vector, i  are so-called slack variables 
for avoiding the overfitting, C  is a penalty term. It is known, 
that SVM can be easily adopted for multiclass problem via 
construction of a set of one-against all binary classifiers [15]. 
Data samples close to the decision boundary play a crucial 
role in such consideration (support vectors). 

A feature selection is an important step in target 
recognition algorithm. In the paper, we comprehensively 
analyze two types of local features: gray level co-occurrence 
matrices (GLCM) [16] and 1-D target profiles [17]. 

GLCM or Haralick features are commonly used for 
texture segmentation and classification problems. For a given 
image ),( yxI , the co-occurrence matrix P is defined as 
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where the offset ),( yx  corresponds to the distance 
between the target pixel and corresponding neighbor. A 
default configuration of GLCM feature vector contains 3 
offsets, 4 directions and averaged features among directions. 
For each co-occurence matrix, 13 statistical features are 
calculated. As a result, a default Haralick feature vector is 
195-dimensional (5 directions * 3 offsets* 13 features). A 
proposed extesnsion of GLCM feature vector will be 
analyzed in the experimental section.  

In addition, we analyze developed feature vector based 
on a fusion of 1-D target profiles (azimuth and range) as an 
input SVM classifier. There are several advantages of such 
local features. Firstly, a simple calculation as follows 
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where NYNX ,  are dimensions of image region of interest 
(ROI). Secondly, above feature are compact and suitable for 
real-time applications. Performance of the proposed fusion 
profiles and GLCM will be discussed in the next section. 

B. Convolutional Neural Networks and Custom 
Architecture 
Interesting peculiarity of CNN is automatic feature 

extraction [4]-[6]. Thus, a key question is a construction of a 
proper network architecture. Several building blocks 
(layers) are typically utilized. A convolutional layer (Fig. 3) 
contains a set of 2-D kernels of a particular sizes (typically 
the same). Parameter stride (distance between blue squares 
in Fig. 3a) controls the decimation of the outputs. In 
addition, zero padding (dotted lines in Fig. 3a) can be used 
to control the boundary effects and size of convolution 
outputs (green square). Filter size is 3*3 in Fig. 3. 

  
(a)   (b) 

Figure 3. Typical CNN building blocks 
(a – convolution, b – activation functions) 

Commonly, convolution layers are connected with 
nonlinear activation functions. Fig. 3b contains several most 
widely used examples. It was shown [18] that rectified 
linear unit (RelU) provides significantly faster training 
convergence and demonstrates nonsaturating nonlinearity. 
LeakyRelU (Fig. 3b) is also often used modified version of 
this activation function.  

Two more layer types should be mentioned during CNN 
description. The max or average pull layer, which is applied 
for data reduction. It acts similarly to convolutional one, 
however instead of direct multiplication of image with 
kernel, the maximum of average value is returned as an 
output. Thus, the data volume is controlled. Another 
important layer type is dropout [19]. A key idea is to 
randomly drop out some units and their corresponding 
connections from network during training process. This 
helps to prevent CNN overfitting and works well as a 
regularization method. As for the training itself, stochastic 
gradient descent (SGD) is a good option.  

Next section contains the results of ATR using both 
machine learning tools. 
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III. EXPERIMENTAL RESULTS 

A. Local Features Analysis 
In this study, we used the moving and stationary target 

acquisition and recognition (MSTAR) database [20]. This is 
a public dataset of SAR images of 0.3m by 0.3m resolution. 
The images were taken over 360 degrees covering various 
target orientations. Dataset was obtained in two acquisitions 
with 3671 and 3203 samples respectively (10 classes). Fig. 4 
illustrates corresponding sample examples from each class. 

 
(b) 

Figure 4. Images of 10 targets from MSTAR database. 

Image samples have 128*128 size with centered targets.  
Initially, we have examined GLCM features. Default 

configuration has provided quite low accuracy (around 79%). 
In order to increase the performance, we have analyzed an 
extended configuration with larger offsets ),( yx  . As a 
result, fused feature vectors were formed. Fig. 5 illustrates 
the dependence of classification accuracy on the number of 
combined co-occurrence matrices.  

 

Figure 5. Recognition accuracy for extended GLCM features. 

One can see that accuracy is improving for higher amount of 
co-occurrence matrices. The peak value is 92%, but the 
drawback is that feature vector dimensionality is very high, 
which complicates the real-time application of the above 
feature set. 

At the next step, 1-D target profiles were tested. It was 
found that fusion of azimuth and range profiles gives better 
classification results. Moreover, optimal image preprocessing 
and ROI size have been determined. Fig. 6 contains the 
recognition results for different local feature sets. At first, 
one can see that effect of GLCM feature vector extension is 
noticeable. Also it outperforms a common local-binary 

patterns (LBP) [21]. It was found, that azimuth profile does 
not provide good discrimination power. Nevertheless, effect  

 

Figure 6. Recognition accuracy for different feature sets with SVM. 

of its fusion with the range profile is positive, giving the 
performance improvement from 82% to 94%. One should 
notice that SVM parameters were optimized for each feature 
set. In particular, cross-validation of classifier was 
accomplished [15]. In addition, the best SVM kernel function 
was found among several alternatives. The radial basis 
function (RBF) [15] has provided the maximum accuracy for 
all feature sets. 

Thus, two different feature sets provide competitive 
accuracy for MSTAR dataset. However, proposed profiles 
fusion scheme is better option due to high compactness and 
simple construction.  

B. CNN Testing 
After experimental analysis of CNN layers, kernel 

parameters and sizes, we have built a deep architecture for 
SAR ATR (Fig. 7). 
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Figure 7. Proposed CNN architecture. 

Proposed CNN contains three convolutions layers with 
kernel sizes 7*7, 5*5 and 3*3 respectively. Max pooling has 
shown higher efficiency than average pooling. Six dropout 
layers were used to carefully control overfitting.  

In addition, data augmentation was performed. 
Additional image samples (128 samples) with random 
rotation were added into the training set. This led to minor 
accuracy improvement (around 0.3%). Also, it was found 
that ROI size has no effect of CNN accuracy. Target 
segmentation did not give any benefits. 

C. Results Discussion 
After testing of SVM and CNN for target recognition, the 

final step is to compare the accuracies. Fig. 8 contains 
comparative results for 10 classes from MSTAR database. 
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The overall accuracy is 94.1% and 99.5% for SVM and CNN 
respectively. One can observe that CNN outperforms SVM  

 
(a) 

 
(b) 

Figure 8. Recognition results 
(a – SVM, b – CNN). 

for 9 classes, while SVM provides 99% only for D7. This 
gives an idea to analyze the classifiers fusion effect. We are 
planning to study this problem in the near future.  

IV. CONCLUSION 

In the paper, a problem of automatic target recognition 
was examined. It was demonstrated, that two different 
machine learning methods provide promising classification 
results. It was shown, that optimized local features and 
properly tuned SVM classifier works well for quite 
challenging MSTAR dataset. A novel feature vector based 
on target profiles fusion was proposed. As a result, it 
outperformed an extended GLCM feature vector in terms of 
speed and accuracy. Moreover, a novel CNN architecture 
was constructed specifically for a given real database with 
radar targets. As a result, outstanding recognition accuracy of 
99.5% was achieved. 
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