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Abstract — augmented reality is popular and rapidly growing 

direction. It is successfully used in medicine, education, 

engineering and entertainment. In the paper, basic principles of 

typical augmented reality system are described. An efficient 

hybrid visual tracking algorithm is proposed. The approach is 

based on combining of the optical flow technique with direct 

tracking methods. It is demonstrated that developed technique 

allows to achieve stable and precise results. Comparative 

experimental results are included. 

Keywords— augmented reality, marker, visual tracking, local 

features, optical flow, direct tracking.  

I.  INTRODUCTION 

Augmented reality (AR) is extremely popular and fast 
growing field [1]-[4]. Its basic idea is based on coexistence of 
real and synthetic (computer generated) objects. Practical 
usefulness is that AR allows to make some things more intuitive 
for the user [5]. As a result, AR is applied in such fields as 
medicine [6], education [5], entertainment and many more.  

Nowadays humanity uses mobile phones and tablets daily. 
This enabled a strong interest for AR applications directly on-
device [3]-[4]. As a result, new software and hardware for AR 
applications are constantly developed [3]-[4]. 

It is known, that efficiency of AR is strictly related with 
robustness and precision of applied computer vision 
algorithms [1]-[2]. From algorithmic point of view, AR required 
precise camera pose estimation (6-degrees of freedom). 
Availability of this information allows to augment an additional 
content such as 3d model, image and video, text data, audio, etc. 

Camera pose estimation is accomplished by means computer 
vision algorithms applied for object recognition. A typical AR 
object is called marker. It can be considered as a predefined 
image with known properties. And it localization within the 
camera frame gives the full information about camera position 
and orientation.  

There are two general types of AR systems: marker-based 
and markerless [1]-[2]. The former relies on a binary markers on 
the scene which can be easily tracked [7]. However, markerless 
systems are more popular since some natural image features can 
be used for detection and tracking [1]-[4]. Typically, planar 
objects are used for this purpose. 

Since real scenes can be challenging due to occlusions, 
varying geometry and illumination changes, there is an active 
research in AR tracking algorithms. In addition, the goal is real-
time performance, which could be difficult, especially for 
mobile devices. 

An initial step before image tracking is detection. Output of 
this procedure is marker location within the camera frame 
(marker corners). For binary markers the contours analysis is 
typically applied [1]-[2], [7]. While for image markers a 
common option is to use keypoint descriptors [8]-[9]. A good 
method for real-time performance is oriented and rotated brief 
(ORB) [10]. As for image tracking, a common way is to use the 
optical flow (OF) algorithm [11]-[12]. The approach estimates 
the drift of interesting pixels (keypoints) in adjacent camera 
frames. In order to make the image tracking more robust, so-
called direct tracking methods are often applied [13]-[15]. A key 
idea here is based on iterative estimation of the transformation 
between the template and test images using the whole image 
patch. An efficient second-order minimization (ESM) algorithm 
demonstrated good performance and faster convergence with 
respect to the Gauss-Newton scheme [13]. However, the 
drawback of ESM is requirement for a high amount of iterations 
in the case of fast camera motion.  

In the paper, we describe a hybrid algorithm based on OF 
and ESM methods. It is demonstrated that such combining 
allows to make the tracking more robust and fast. As a result, 
camera pose is estimated precisely giving a realistic effect of 
augmented content. 

In Section II, main principles of AR system are described. In 
particular, geometry peculiarities, marker types and principles of 
data augmentation. Section III describes the developed hybrid 
algorithm. Experimental results are discussed. 

II. AUGMENTED REALITY PRINCIPLES 

A. Projective Geometry 

A key of every AR application is estimation of the camera 

pose. Let’s consider mathematical background of a problem. It 

is known that 3D and 2D worlds can be related using the 

projection equation [16] 

ii MPms ×=× ,   (1) 
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where s  is a scale factor, ii Mm ,  are world and projected point 

coordinates respectively, P  is projection matrix 
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Here K  is intrinsic camera matrix, [ ]tR |  is an extrinsic matrix 

describing the orientation and translation of the camera. The 

former does not depend on the scene and determines the camera 

parameters, namely, ),( yx cc  is a principal point, yx ff ,  are 

focal lengths expressed in pixel units. The latter represents an 

Euclidean transformation from a world coordinate system to the 

camera coordinate system [16]. 

Fig. 1 illustrates the principle of point projection onto the 

image plane 

 

Fig. 1. Projective geometry. 

One can see the planar object. An arbitrary point 

),,( ZYXM i  is projected on the focal plane resulting in 

projection ),( vumi .Thus, in the case of precise estimation of 

matrices K  and [ ]tR |  Additional content can be augmented on 

camera frame in realistic way. One can show that it is enough 

to know exact 2D-3D correspondences for four pixels for a full 

camera pose reconstruction [1]-[2], [16].  

B. Marker Detection and Data Augmentation 

Let’s consider how AR algorithm can be built. Firstly, one 

should emphasize that camera matrix K  is estimation once 

during camera calibration procedure [1], [12], [16]. The 

situation is more challenging for extrinsic camera parameters 

estimation. It is known that relation between two arbitrary 

projections is described via the homography matrix [12], [16] 
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Typically, 133 =h  and, hence, homography is estimated up to 

a scale factor. As a result, 8 unknown matrix elements should 

be found from a set of point correspondences (at least 4 points). 

In order to perform consistent estimation, high amount of pixel 

pairs can be analyzed simultaneously using random sample 

consensus method (RANSAC) [1], [12].  

Let’s consider how different markers can be localized in 

camera frame. Fig. 2 illustrates how typical binary (fiducial) 

marker can be recognized.  

 

Fig. 2. Fiducial marker recognition. 

Firstly, contours are extracted from the input camera frame after 

thresholding [1]. Secondly, quadrilateral shaped contours are 

found. Finally, binary code matching is accomplished for 

marker candidates finalizing the marker recognition procedure. 

Apparently, that putting of binary markers into the scene is not 

practical. Therefore modern AR systems use much more 

convenient image markers. In this case marker detection in 

camera frame is performed using local feature descriptors. We 

used ORB descriptor in our AR system. Fig. 3 illustrates a 

principle of planar image marker detection. 

 

Fig. 3. Image marker detection example. 

A predefined amount of keypoints is detected [1], [12]. 

Secondly, ORB descriptors are calculated for each keypoint. 

Finally, matching using Hamming distance metrics is 

accomplished [10]. One should emphasize that descriptors 

matching procedure is very important for the homography 

estimation [1]. Determined point-to-point correspondences are 

used for updating the camera pose. 

Fig. 4 illustrates an example of data augmentation using 

estimated camera pose. 
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Fig. 4. Example of augmentation 

 (left – binary marker with 3d model, right – image marker with 

augmented image). 

One can see an example of binary marker and augmented 3d 

model of butterfly (left). An example of image augmentation on 

the image marker is illustrated on the right side.  

In general, marker detection algorithms can be applied 

consequently for camera frames after initialization. However, 

possibilities of local feature descriptors are limited due to 

varying scale and viewing angles [10], [12]. In addition, faster 

and more efficient tracking techniques can be used. Next 

subsection describes the developed tracking algorithm which is 

applied in frame-by-frame basis.  

III. EXPERIMENTAL ANALYSIS 

This section contains a description of key steps of tracking 
algorithm and illustrates the experimental results. 

A. Hybrid Tracking Algorithm Description 

In order to keep augmentation stable and realistic, local 
image features should be properly tracked and kept within 
camera frames. We propose to combine the OF algorithm with 
ESM procedure.  

The OF performs the estimation of the flow vector for a 
given interesting pixel using the local spatial window around the 
analyzed pixel  
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where yx II ,  are the horizontal and vertical image gradients, tI  

is time gradient, i.e. difference between the frames, ),( vu  are 

OF vector components. Summation in (4) is accomplished in a 

local window around the pixel of interest.  

The challenge is that OF often fails when amount of 

keypoints is not enough or camera movement is too fast. In 

order to make image tracking more robust, we propose to refine 

the estimation using ESM algorithm. The key difference 

between local feature based and direct tracking is that for ESM 

the whole image patch transformation is estimated. 

Transformation parameters are evaluated based on 

minimization of a particular metric. For instance, sum of 

squared differences [13] 
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Here RI  is a reference image (marker), FI  is the warped 

camera frame according to the homography of the previous 

frame  

1
1

−
−= FF

warped
F HII .  (6) 

Thus, the perspective of previous camera frame can be used as 

initial estimation.  

Let’s consider the Taylor expansion 

HHesHJII
warped
FR Δ⋅+Δ+=

2

1
,  (7) 

where J  is Jacobian, Hes  is Hessian, HΔ  is an unknown 

warping matrix (homography multiplier). The idea of ESM is 

based on approximation of the Hessian component [13] 

allowing to provide the faster algorithm convergence with 

respect to conventional Gauss-Newton scheme 

)()(2 0 R
warped
F IIJJH −+−=Δ

+
,  (8a) 

HesJJ +≈0 ,   (8b) 

where 
+

+ )( 0JJ  is a pseudoinverse extended Jacobian 

matrix, 0J  is Jacobian of identity warping [13]-[14]. As a 

result, such scheme allows to iteratively update the warping 

parameter HΔ .  

We have integrated the proposed two-step tracking 

algorithm into mobile AR system. Fig. 5 illustrates a high-level 

scheme of the developed method. The initialization (marker 

detection) is accomplished using ORB descriptor. For marker 

tracking, OF algorithm is applied for consequent camera 

frames. Estimated pixel correspondences are used for 

calculation of the projection transformation. Secondly, warped 

camera frame is used as an input for iterative ESM algorithm 

providing additional refinement. Finally, camera pose is 

reconstructed [1]-[2]. The next subsection contains 

experimental analysis of the developed AR tracking algorithm. 

B. Experimental Results 

Let’s analyze the performance of the method quantitatively. 

For this purpose, we have created a benchmark image sequence 

with known ground truth data (precise camera pose 

information).  

The first important thing is the analysis of tracking 

capability and ESM convergence speed. Fig. 6 illustrates the 

amount of required iterations for each frame. One can observe 

that OF allows to substantially reduce the amount of ESM 

iterations. Also, for the ESM only the tracking algorithm fails 

in the middle of image sequence. In contrast, consequent 

application of OF and ESM allows to track the image marker 

and keep the moderate amount of ESM iterations for full 

convergence.  
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Fig. 5. Block-scheme of developed AR system. 

 

 

Fig. 6. ESM iterations. 

Another practical example is camera pose reconstruction. 

Fig. 7 illustrates true camera pose and two reconstructed 

trajectories. Start and destination points are marked by arrows 

(Fig. 7). One can observe that combined marker tracking 

algorithm provides almost total coincidence with the ground 

truth. The maximum deflection in this case was not higher than 

several millimeters (green circles). For the case of OF usage for 

the image tracking, the accuracy is worse. The camera pose 

deflection was accumulated through the frames sequence 

resulting in around total 10 centimeters error (red circles). The 

test image marker was located at the origin (0, 0, 0).  

Developed tracking algorithm was integrated into software 

development kit (SDK) intended for mobile devices (Android 

and iOS). Currently we are working on algorithm 

improvements and optimization.  

IV. CONCLUSION 

 In the paper, a robust tracking algorithm for AR applications 
was proposed. Comparative analysis of OFLK and ESM 
approaches indicated on a potential of combining of these 
approaches. As a result, hybrid tracking method was developed. 
We have demonstrated that consequent application two 
proposed methods gives a possibility to achieve good results in 
terms of accuracy and speed. This is crucial for mobile devices 
and tablets with limized hardware capabilities. In the near future 
we are planning to fully adopt the developed algorithms for 
mobile devices. 

 

Fig. 7 Estimated camera pose. 

REFERENCES 

[1] D. Baggio, S. Emami, D. Escriva, Mastering OpenCV with practical 
Computer Vision Projects. Packt Publishing, 2012. 

[2] S. Siltanen,Theory and applications of marker based augmented reality. 
VTT Science 3, Espoo 2012. 

[3] https://www.wikitude.com/products/wikitude-sdk/ 

[4] https://www.vuforia.com/ 

[5] P.Chen,X. Liu, W. Cheng, R. Huang. A review of using Augmented 
Reality in Education from 2011 to 2016. Innovations in Smart 
Learning.Part of the series Lecture Notes in Educational Technology, 
2016, pp. 13-18. 

[6] http://medicalfuturist.com/ 

[7] S. Garrido-Jurado, R. Muñoz-Salinas , F.J. Madrid-Cuevas , M.J. Marín-
Jiménez. Automatic generation and detection of highly reliable fiducial 
markers under occlusion. Pattern Recognition. Volume 47, Issue 6, June 
2014, Pages 2280–2292. 

[8] H. Bay, A. Ess, T. Tuytelaars and Luc Van Gool. SURF: Speeded Up 
Robust Features. Computer Vision and Image Understanding (CVIU), 
Vol. 110, No. 3, 2008, pp. 346—359. 

[9] D. Lowe. Distinctive image features from scale-invariant keypoints. 
International journal of computer vision, Vol. 60, No. 2, 2004, pp. 91-110. 

[10] E. Rublee, V. Rabaud, K. Konolige and G. R. Bradski. ORB: An efficient 
alternative to SIFT or SURF, ICCV, 2011, pp. 2564-2571. 

[11] J. Shi and  C. Tomasi. Good features to track. In: IEEE Conf. on Computer 
Vision and Pattern Recognition, 1994, pp. 593-600. 

269



[12] G. Bradsky and A. Kaehler, Learning OpenCV, O’Really Media Inc., 
2008. 

[13] S. Benhimane and E. Malis. Real-time image-based tracking of planes 
using efficient second-order minimization. IEEE/RSJ International 
Conference on Intelligent Robots and Systems, Vol. 1, 2004, pp. 943-948.  

[14] S. Benhimane and E. Malis. Homography-based 2d visual tracking and 
servoing. Int. J. Robot. Res. No. 26, 2007, pp. 661–676. 

[15] S. Lieberknecht, S. Benhimane, P. Meier, N. Navab, Benchmarking 
template-based tracking algorithms. Virtual Reality 15(2-3):99-108. June 
2011. 

[16] R. Hartley and A. Zisserman. Multiple View Geometry in Computer 
Vision. Cambridge University. Press, second edition, 2004. 

 

 

 

 

270


