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Abstract – It is known, that nowadays almost every indoor 

positioning and navigation system (IPNS) consists of a radio 

signals part (Wi-Fi or BLE) and a part based on smartphone 

inertial sensors. Both parts contain a number of challenges 

complicating a precise user positioning using mobile phones or 

tablets. In the paper, we describe several contributions. Firstly, a 

problem of BLE packets recovering is considered. A specific 

version of a Kalman filter for received signal strength indicator 

(RSSI) data analysis is developed. The proposed modification 

allows recovering lost data as well as providing sufficient signal 

smoothing. Secondly, a custom step detection procedure based on 

an inertial navigation system (INS) is developed. Unlike to a 

common solution based on the thresholding of linear acceleration 

amplitude, an advanced version of the detector is highlighted. 

Finally, a hybrid indoor localization and navigation (HILN) 

system developed on the basis of a particle filter (PF) and the 

proposed modifications for BLE and INS parts is described. 

Experimental results are provided. 

Keywords: indoor navigation; BLE beacon; Kalman filter; 

inertial sensor; Particle filter; RSSI. 

I.  INTRODUCTION 

Indoor navigation is a cutting-edge problem and has no 
unanimous verdict. Many solutions have been proposed since 
the introduction of Apple iBeacon protocol in 2014. Such big 
companies like Estimote, Infsoft, Senion and others offer their 
software development kits (SDK) and mobile applications for 
building the IPNS. To a greater or lesser extent, a modern indoor 
navigation system has a part for processing radio signals, usually 
from BLE beacons, and INS, which incorporates data from 
wearable sensors such as accelerometer (A), gyroscope (G) and 
magnetometer (M) [1-3]. 

All known techniques for INS implementation are based on 
a step-based pedestrian dead-reckoning (PDR) algorithm or its 
numerous modifications. At the first stage, the step is detected 
using different techniques [4]. Next, the step length is evaluated 
[3-5] followed by the attitude and heading estimation by either 
Madgwick, Mahoney or Kalman algorithm. Finally, sensor 
readings are transformed from the local coordinate system (CS) 
to a global one using either rotation matrices or quaternions [3]. 
After all, the detected steps are summed up to get a user track in 
the building. The most problems faced with the INS algorithms 
are bias and noise of sensor readings. It makes the straight 
double integration approach impossible to track the pedestrian. 
The noise turns into a real problem for the step detection 

algorithm with a constant boundary or its numerous 
modifications, because the noise causes numerous false step 
detections. Every false event turns into 0.7-0.8 m error in the 
pedestrian position [5]. Thus, special signal processing is 
obligatory for sensor readings and in order to decrease false 
responses more advanced step detector, which takes into account 
all possible properties of a step signal pattern, should be applied. 

BLE or Wi-Fi radio signals are not inertial, but considerably 
suffer from fluctuations. The main approach to the BLE 
positioning is based on the trilateration. It requires at least three 
beacons near the user to calculate the position. In addition to the 
RSSI fluctuations another problem, found from the real-life 
IPNS operation, is the fact that not all packets are usually 
received. Moreover, the number of received packets depends 
greatly on smartphone manufacturer and model, beacons 
manufacturer, whether the user moves or is in a steady state. To 
our best knowledge, there is no information about this 
peculiarity in the literature. The missing packets result in 
permanent hopping of the triplets (three beacons selected to run 
the trilateration). The considerable fluctuations of the RSSI 
result in the fact that the exact position can never be determined, 
i.e. the user can be localized in some area only. Kalman filtering 
approach is often applied for smoothing RSSI variations [6] or 
processing user coordinates at the output of the IPNS radio part 
[7]. But, to our best knowledge, the solution for the task of 
processing the missing RSSI packets has not been published yet. 

Note that the most modern indoor navigation systems fuse 
the BLE and INS approaches for their mutual improvement. 
Such systems are known as HILN systems [2, 8]. They are drift-
free, low-cost, light-weight, easy-to-integrate inertial 
positioning systems, enabling ubiquitous navigation of 
pedestrians in buildings equipped with beacons or Wi-Fi spots. 
A particle filter (PF) is often chosen as an algorithm for fusion 
of INS data and IPNS radio part output [2, 8].  

The paper’s structure is the following. At first, the main 
features of the BLE navigation approach are discussed. 
Modification of Kalman filter for the task of recovering of 
missing RSSI values is proposed in Section 2. Section 3 is 
devoted to the description of the proposed step detector and its 
main features. Finally, HILN system designed on the basis of the 
particle filter is discussed and the comparative analysis of three 
kinds of IPNS, namely, BLE-based, INS and HILN, is 
performed. 
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II. BLE NAVIGATION 

A. Shortcomings of BLE beacon signals 

There are a number of parameters which can be used in the 
radio part of IPNS. They are the received signal strength, 
received and propagation time, etc. [1]. Among them, the first 
parameter described by RSSI value is used most often. The 
higher the RSSI value in the received BLE or Wi-Fi packet, the 
stronger is the signal and, hence, the closer a user is to the 
beacon. The main RSSI drawback is its considerable 
fluctuations that may reach 5-8 dBm. After applying the pass-
loss model such a deviation can be interpreted as 3-12 m of 
distance error. In order to cope with the abovementioned 
shortcomings, the Kalman filter for RSSI signals is often applied 
for smoothing the data [6]. 

Another difficulty in IPNS radio part connects with the 
application of trilateration algorithm. It is quite obvious that the 
input to this algorithm must contain the information about three 
beacons selected in a proper way. Let us analyze the real-life so-
called BLE packets map, which represents the dependence of 
RSSI values received from each BLE beacon by a smartphone 
upon time. The packet map recorded by the Samsung Galaxy 
Note 5 for the case when the user stays immovable in the test 
room surrounded by nine Sensoro BLE beacons is shown in 
Figure 1. Beacons advertising interval was equal to 417.5 sec. 
From the initial map of received RSSI values (Fig. 1a) it is 
clearly seen that there are missing packets outlined with dotted 
lines. Such packets must be understood as the packets, that due 
to different reasons were not received by the smartphone, despite 
they were sent by the beacons.  

In the considered approach, three beacons with the highest 
RSSI values are selected to run the trilateration. The gaps on the 
map result in misselection of the beacons and, as a result, to a 
user position discontinuous change. For example, in Fig. 1a the 
selected beacons at the first step are beacons #1, #6 and #5, at 
the second – #1, #4 and #5, at the third – #6, #5 and #7, which 
makes no sense at all because the user did not move and it is 
reasonable to expect the same selected beacons at each time 
moment. Different selected beacons are caused by the missing 
packets problem (step 2 - packets from beacons #2 and #6 are 
missed; step 3 - packets from beacon #1 and #4 are missed). 

B. RSSI packets recovering using Kalman filter 

The described RSSI signal shortcomings can be overcome 
by the Kalman filter for RSSI [6]. The model of the process used 
in the Kalman filter is 

 
1i i i−

= ⋅ +X A X Ο   (1) 

where X is a state vector equaled to Xi = (RSSIi ΔRSSIi)T, 

ΔRSSIi = RSSIi - RSSIi-1, denotes the RSSI change within the 

beacon advertising interval, A is a transfer matrix, 

( )1 2

TA A=A , ( )1 1 iA t= Δ , ( )2 0 1A = , Δti = ti - ti-1, O is 

a process noise vector Oi = (νi
RSSI  Δνi

RSSI)T, which is assumed 

to be drawn from a zero-mean multivariate normal distribution. 

The model of the measurements is 

 
meas meas

i i i= ⋅ +Z H X Ο  (2) 

 
a) b)

Figure 1 – RSSI packets map before (a) and after (b) Kalman filtering: dotted 
lines – missed packets, solid lines – recovered packets 

where Xi
meas denotes the measured state vector for the ti time 

sample, H= (1  0) is a correspondence matrix and 

Oi
meas = (νi

RSSImeas) is a measured noise vector which is assumed 

to be zero-mean Gaussian white noise. 

As described in [6], Kalman filter can smooth the RSSI 
fluctuations, but in the proposed modification it also restores the 
missing packets with high confidence. For doing this we use the 
algorithm shown in Fig. 2. The signal from each beacon has its 
own version of Kalman filter. When there is no packet from one 
of the beacons, Kalman gain vector, Ki, for the corresponding 
filter is set up to zero. As a result, the corrected RSSI value, 
Xi

corr, at the filter output is entirely determined by the predicted 
RSSI value, Xi

pred, according to the filter model (1). 

As you can see in Figure 1b, at first, there are no missing 
packets after filtering and, the second, beacons #1, #5 and #6 
will be selected for trilateration in almost all timestamps. I.e. the 
beacons are properly chosen as well as their readings are 
smoothed. 

 

Figure 2 – The flow of the Kalman filter modification for RSSI signals: Q and 

R are the process covariance matrix and observation noise matrix, respectively 
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III. INS PART OF THE IPNS 

INS relies on the data captured by the 
microelectromechanical system (MEMS) sensors. The mobile 
devices nowadays are accomplished with a wide range of them 
[3, 4]. The navigation approach, which was used for our IPNS 
implementation, addresses the readings from only A, M and G 
sensors, which are necessary for attitude and heading algorithms 
as well as step detector [2-4, 8]. The readings of the sensors are 
usually spoiled with noise but the most considerable problem of 
the INS part, dealt with the evaluation of position increments, 
arrives when one must detect the step event.  

The physical nature of the problem is caused by the 
differences in the gait of men and women [9], in the place where 
the device is kept during the track (handheld, in the pocket, 
phoning, dangling etc.) in the proximity of obstacles [10]. 
Numerous proposed step detectors, for example [4, 10], are very 
unlikely to have the commercial future due to different reasons. 
The step detectors with the constant threshold are too sensitive 
to anthropometric statistics of the pedestrian, his/her gait and the 
walking location (flat surface or stairs). The method with the 
characteristic points, [10], requires high-precision sensors with 
the high-quality output signals to distinguish the patterns. 
Moreover, such patterns correspond to the case when the 
smartphone is in the pocket.  

Due to the described shortcomings of the overviewed 
algorithms, new step detector based on an adaptive threshold and 
the amplitude analysis was designed. It analyzes the magnitude 
of acceleration aabs. When the pedestrian is not moving, then 
aabs(i) oscillates around its average value aavg. When the 
pedestrian starts moving, the algorithm is going to detect the 
characteristic sinusoidal oscillations. If the new measurement is 
obtained, the aabs average value is updated: 

 ( ) ( ) ( ) ( )1 1avg avg avg avg absa i a i a iω ω= − ⋅ − + ⋅  (3) 

 where ωavg is a coefficient characterizing the impact of 
current measurement on the acceleration average value. In this 
way, the step detector by its own updates the aavg value despite 
the initial guess. The step start is detected when the next 
condition turns true: 

 ( ) ( ) ( ) ( ) & 1  &  0abs avg abs avg starta i a i a i a i t> − < =  (4) 

 where tstart is a time when the step start had been detected (by 
default, the parameter equals to zero). The step end is detected 
when the next condition is true: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )max min

& 1 &

t 0 & 1

abs avg abs avg

start abs abs A

a i a i a i a i

a s a s C A s

   > − >   
 ≠ − > ⋅ − 

 (5) 

 where s is an integer value and denotes the step counter, 

( )max

absa s  and ( )min

absa s  are the maximum and minimum A values 

in a current step s, A(s) is the acceleration amplitude value at the 
beginning of the current step s, CA is a tuning factor. The 
amplitude A(s) is recalculated every step as 

( ) ( ) ( ) ( ) ( )max min1 1amp amp abs absA s A s a s a sω ω  = − ⋅ − + ⋅ −    (6) 

 where ωamp is a coefficient characterizing an impact of 
current amplitude to the average amplitude value. Every step 
must pass the verification procedure: 

 ( ) ( )1start t avgSTt i t C T s− > ⋅ −  (7) 

 where t(i) is the time moment when the step end had been 
detected, TavgST(s-1) is an average time of the step at the 
beginning of the current step, Ct is a tuning factor. The average 
time is recalculated every verified step as 

 ( ) ( ) ( ) ( )( )1 1avgST t avgST t startT s T s t i tω ω= − ⋅ − + ⋅ −  (8) 

 where ωt is coefficient characterizing an impact of a current 
time interval to the average time. 

 The example of the step detection operation is shown in 
Figure 3 for the test case when the user was moving straight 
ahead and held the phone in the hand at the chest height. 30 steps 
were made and 30 step events were counted by the proposed step 
detector. Note that the first and the last steps differ from the other 
ones and it is rather difficult to detect them due to the smaller 
values of the acceleration signals. 

IV. HILN NAVIGATION 

The hybrid IPNS fuses INS and BLE-based system or INS 
and Wi-Fi-based system for better user position estimation [1, 2, 
8]. No doubts, that the INS component of a HILN system is very 
accurate for up to 1-minute term. However, such period of time 
is not typical for the navigation. Hence, it sounds reasonable to 
expect the INS to have corrections from time to time to eliminate 
the accumulated drift. The data for the correction is typically 
obtained from the non-inertial systems, like BLE-based, Wi-Fi-
based, or even ID card terminals [1, 2, 8]. 

There are three known methods for fusing the inertial and non-
inertial navigation systems. The first one implements the 
feedback filter weighting the position evaluated using BLE or 
Wi-Fi signals and by INS [8]. This method is rather inefficient 
and its navigation precision rarely breaks the 3 m boundary. 

 

Figure 3 – The example of accelerometer signals (top) and operation of designed 
step detection application (bottom) 
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Kalman filtering is a very powerful fusion tool able to 
automatically determine the trust rates to different sources. 
However, the monolith structure of the filter makes its 
modification to be a very complex task [6]. The most prospective 
method for the fusion is PF. It was first proposed in 1996 in [11] 
and since that time takes a considerable portion of cases that 
relate to Markov processes.  

The PF has three stages that happen every iteration and one 
stage that happens once (in the ideal case) or several times. The 
filtering starts with seeding the first generation of particles 
which may cover all map when there is no information about the 
user position, or just a part of the map when some very 
approximate position is known. The initial information for 
seeding can be obtained from the radio part of HILN. At the next 
step, the initial generation of the particles is subjected to a 
displacement according to the INS part. The positions of all 
particles are updated based on the step length at each moment of 
time. 

At the second step, the particles must get weights, which are 
calculated according to the known information about the map 
with its black (forbidden for navigation) and white (allowed for 
navigation) regions and the position determined by the beacon. 
If a particle at the ith step is in the forbidden map region or 
crosses the forbidden map region while relocating from the (i-
1)th step to the ith step, then this particle is considered to be dead 
and its weight becomes equal to zero. The closer the particle to 
the position determined by BLE part, the greater its weight. At 
this step, the correction of inertial disturbances happens, because 
the most drifted particles get the minimal weights. 

 The last stage of the algorithm is called resampling. There 
are numerous techniques for performing this step [11]. The 
number of particles at this stage must be brought back the initial 
amount, while the higher probability of getting to a new 
generation belongs to particles with higher weights. 

Finally, Figure 4 represents the results obtained by three 
IPNS types with the ground-truth marked with arrows. The 
modification of Kalman filter for lost packets recovering as well 
as designed step detector were applied in proper system parts. It 
is clearly seen that there is a discontinuous change of a user 
position and quite low positioning accuracy for the BLE-based 
component of IPNS (Fig. 4a), however the main direction of a 
user movement is observable. One may observe a trajectory drift 
caused by the residual noise of the G for INS-based navigation 
in Fig. 4b. As was expected, the best performance is shown by 
designed HILN (Fig. 4c), which provides very accurate 
positioning with no visible track drifting in time. In all 
experiments held with hybrid IPNS, the accuracy positioning 
error varied in the range 0.5 to 1m m on an area of 15×6 meters, 
which is competitive with the leading commercial solutions. 

V. CONCLUSIONS 

We have presented several ideas allowing to improve the 
indoor positioning accuracy. In particular, specifically 
constructed Kalman RSSI filter properly restores the lost beacon 
packets and suppress the signal fluctuations. A novel step 
detector allows to control user’s movement and avoid a lot of 
false positives. Finally, the proposed fusion scheme gives 
noticeable effect on mobile navigation system efficiency. 

 
a) b) c)

Figure 4 – Example of user position estimation performed by BLE-based 
IPNS (a), INS-based navigation system (b) and HILN system on the basis of 

PF (c) 
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