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Abstract — The modified You only look once (YOLO) 

network architecture that allows one-dimensional direction 

estimation along with classic object detection in real time, is 

considered in the task of street traffic surveillance from 

unmanned aerial vehicles. The key feature is a modified output 

fully connected layer with additional orientational parameters. It 

has been shown that this network can estimate the direction of 

vehicles on a custom testing dataset with photos. 
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I. INTRODUCTION 

In recent years, the development of unmanned aerial 

vehicles (UAVs) is rapidly gaining attention, especially in the 

context of all auxiliary systems such as automatic control and 

autonomous functioning, video surveillance and 

corresponding recognition and tracking of objects. A lot of 

recognition techniques, both general purpose and specifically 

designed for UAV applications, have been proposed to fully 

utilize wide opportunities proposed by usage of UAVs in 

many fields of human activity. One of the most important 

tasks is gathering as much information about the target (i.e. 

desired object) as possible based on the recorded video 

footage. The major part of the required information includes 

data about object class, its position, and orientation in the real 

world coordinate frame. This leads to the development of 

sophisticated target recognition algorithms in order to improve 

the performance of detection systems. 

Conventional detection algorithms perform only detection 

of objects inside bounding boxes and their further 

classification or can additionally produce a pixel-wise 

segmentation of the whole image and overlaying of the mask 

over the detected object. Whereas usually additional 

information about an object’s orientation is necessary in many 

applications. In some cases, it can be useful for additional 

improvement of the object recognition and classification.  

In other applications such as real-time tracking, knowing 

the pose of a moving object (an airplane, a car, a boat etc.) 

also helps to estimate its three dimensional (3D) direction of 

motion. In robotics, estimating the orientation of surrounding 

objects is helpful for driving of the autonomous agent. 

The problem of 3D pose estimation is difficult because the 

space of orientation parameters is non-linear and non-

Euclidean. This obstacle leads to the appearance of many 

methods for their representation [1]. In the case of one 

dimensional (1D) orientation estimation of objects on the 

ground that is a typical scenario for video-footage taken from 

UAV, the mentioned problem remains despite significant 

reduction of the parameters number. At the end of the next 

section, we outline a few classic representations for angular 

parameters and explain our choice for the presented work. We 

do not address the problem of symmetries in the object, which 

cause the appearance of multiple identical orientations. In 

other words, in these cases, there are multiple “correct” 

orientations that makes it impossible to say, where is the front 

or the back.  

One of the most crucial factors for current autonomous 

robots and UAV is performing of operations in real time. That 

requirement puts additional constraints for detection and 

direction estimation methods. Ideally, those two tasks should 

be performed simultaneously. 

In this paper, we propose a new approach to 1D objects 

orientation estimation in the framework of the state-of-the-art 

YOLO (“You Only Look Once”) real-time objects detection 

and classification neural network. Beside the classic bounding 

box with objects, it provides the angular estimation for each 

detected box. The proposed network has been tested on the 

task of the vehicles detection on the aerial images that is quite 

a typical scenario where the object direction is important. 

II. ANALYSIS OF PUBLICATIONS 

There are a few types of object detection methods that 

include classic detectors, two-stage detectors, and one-stage 

detectors. Classic object detectors operate in the sliding 

window, in which a classifier is applied every time over a 

predefined image grid. More recent approaches operate in two 

stages and use region proposal methods to first generate a set 

of potential areas that should contain all objects while filtering 

out the most of locations without objects and then run a 

classifier on these proposals for final accurate detection of 

desired objects. Yet another modern approach to object 

detection assumes a single run over the image that is closer to 

the natural way of how humans detect objects. 

As far as we are interested in real-time processing we will 

focus on single-stage detectors. The three main methods can 

be mentioned here: Single Shot Detector (SSD) [2], YOLO [3], 

[4] and RetinaNet [5]. Their effectiveness roughly varies in the 

same order: SSD has about 10-20% less average precision, 

YOLO version 3 (v3) has almost the same precision as two-

stage detectors, and RetinaNet so far is the best state of the art 

object detector. However, YOLO v3 is the fastest among them 

and still has acceptable precision. 

Quite a comprehensive review of known orientation 

methods can be found in [6]. We just briefly notice key points. 
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One of the most popular approaches treats continuous 

orientation estimation as a multi-class classification problem 

by binning the continuous orientations. The work [7] considers 

up to 360 classes for the viewpoint classification problem. 

In [8], a three-step approach is proposed. Firstly, it 

supposes prediction of a bounding box containing the object, 

then orientation is estimated based on image features inside 

the predicted bounding box, and finally, a classifier checks the 

existence of the object. As another example, the orientation 

estimation method for vehicles in [9] is using histogram of 

oriented gradients (HOG) features with support vector 

machines (SVM) or the AdaBoost classifier. 

In [10] the problem is addressed using convolutional 

neural network-based features. However, generally, it can be 

fully implemented on the convolutional neural networks (CNN) 

basis as it is done in [11] and [12] where Region-CNN (R-

CNN) and faster R-CNN are used to detect objects with axis-

aligned bounding boxes and then another CNN-based 

classification model was used to classify the orientation of 

each bounding box. The Auto-masking Neural Network (ANN) 

for joint object detection and viewpoint estimation is 

introduced in [13]. The key component of ANN is a mask 

layer that synthesizes a mask for only the important parts of 

the image to be used for the final prediction. 

Some approaches [14] address the task as a continuous 

prediction in order to avoid errors caused by discretization. 

Several works consider learning a suitable representation for 

the orientation estimation task. For example, in [15], an 

embedded representation that reflects the local features and 

their spatial arrangement as well as enforces supervised 

manifold constraints on the data is proposed. Then a 

regression model to estimate the orientation is learned using 

the proposed representation. 

The essence of abovementioned methods lies in the fact 

these methods divide detection and orientation estimation into 

two steps, which make the process more complicated and 

time-consuming. Meanwhile, axis-aligned bounding boxes are 

used during the detection process. They contain not only 

objects but also backgrounds, increasing the difficulty of 

accurate detection. In [16] that problem is finally considered in 

the single framework of the known object detection method 

SSD and has better speed in comparison to stacked methods 

mentioned above. In the present work, we stick to the same 

philosophy but with YOLO network. 

For the continuous orientation estimation task, the method 

has to predict the angular value, which belongs to a non-

Euclidean space, prohibiting the direct use of a typical L2 loss 

function. There are a few approaches to handle this problem. 

The first approach represents an angle as a point with two 

coordinates on a unit circle. One can interpret them as real and 

imaginary parts of a complex number or as quadrature 

components of a vector. Then, the network is trained using the 

common L2 loss for all predicted parameters. The predicted 

2D point is not necessarily lying on a unit circle but for the 

final output and/or visualization it is converted back to the 

angular value by the arctangent function. The second approach 

also uses a-point-on-a-unit-circle representation. It minimizes 

a loss defined directly on the angular difference, not as an L2 

function in 2D space. In the third approach, the discretized 

orientations are uniformly distributed in the output circular 

space where the mean-shift algorithm is carried out to find the 

most plausible orientation while taking into account the 

softmax probability for each discrete orientation [6]. 

Another approach lies in a similar plane and is based on 

the statistical representation of the angle as well. The angle 

can be described by a von Mises distribution, which is the 

circular equivalent of the Gaussian distribution. Similar in 

shape to the von Mises distribution is the wrapped Gaussian 

which wraps the ordinary normal distribution around a circle. 

In [17] they represent the angular hue component of the hue 

saturation value (HSV) model that is used for training of the 

color-based pedestrian detector. 

III. ORIENTED YOLO NEURAL NETWORK 

As a basis for our experiments we have chosen an open-

source platform: the Darknet framework written in C and 

Compute Unified Device Architecture (CUDA) and modified 

accordingly to proposed changes [18]. It has been enhanced 

with the functionality for estimation of object direction. It 

should be noted that we were focused mostly on the YOLO 

network of the 3rd version [4] of the architecture, however, it 

can be implemented for older versions of the network as well. 

The YOLO network uses a single-stage approach that 

supposes predictions on the basis of the actual image, without 

regions prediction stage. Before the processing, the input 

image is automatically resized to a tensor of size n × m × c, 

where n and m represent width and height in pixels and c is the 

number of color channels (c=3 in most cases).  

Processing of the image by the YOLO v.3 network can be 

described in the next way. The input image is divided onto the 

grid of cells of some size. For 416 × 416 input size, that grid 

consists of 13 × 13 cells. Inside each cell the network 

performs detection and prediction of a certain amount of 

bounding boxes. Those boxes can cover a part of this cell, if 

the detected object spans over a few neighbor cells, or 

completely lie inside that cell. 

Original network supposes that each predicted bounding 

box contains the following geometrical information: xb  and 

yb  coordinates of the bounding box, width wb , and height hb . 

Additionally, we introduce two parameters xq  and yq that we 

consider as quadrature components of a vector that represents 

the direction from the center of the bounding box. Those two 

parameters are not explicitly related to the position or size of 

the bounding box.  

Bounding box parameters are calculated through 

predictions qyqxhwyx tttttt ,,,,,  from cell coordinates yx cc ,  

and bounding box prior width wp  and height hp  as 
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Besides coordinates and the object direction, the network 

predicts the “objectness”. It is the probability that the 

bounding box contains the object and C conditional 

probabilities of belonging to each of predefined C classes. 

Each cell is supposed to predict up to 3 bounding boxes. 

Therefore, we can write down the  output tensor size as 13 × 

13 × [3 * (4 + 2 + 1 + C)].  

The losses are described by the multicomponent L2-norm 

based function that can be written as 
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where 
obj

iI  indicates appearance of the object in the cell i and 

obj

ijI  indicates that jth predicted bounding box in the cell i is 

responsible for the current prediction, hNwNcoord bb−=λ 2  is 

calculated on the basis of relative width and height hNwN bb ,  of 

the bounding box, O denotes objectness of the current 

predicted box and p(c) denotes probability of belonging of the 

detected object to the cth class, yTxTTTTT qqhwyx ,,,,,  

denote ground truth values of aforementioned parameters. 

IV. CNN TRAINING 

We have been trained and tested the modified network in 

the scenario of street traffic surveillance from drones, where 

we measured performance of original YOLO v.3. For this 

purpose we used the custom dataset from the internet [19] that 

consists of street photos taken from above with objects of 4 

main classes of interest: a car, a minibus, a truck, and a bus. 

There were also trams marked as buses. Images in the dataset 

include a variety of vehicles with many color paintings and 

orientations. We have cleaned that dataset from images with 

too small objects on them and supply it with an additional 

angular information, required for our network, i.e. ground 

truth directions of objects in each marked bounding box. 

Therefore, our modified network has been trained for 

detection of 4 object classes (C = 4), which gives us a size of 

the output tensor as 13 × 13 × 33.  

The training set consists of 90 images containing 1480 

objects instances in total. For performance evaluation on the 

separated testing dataset with 12 images containing 245 

objects has been used. 

 In order to achieve a better generalization by the model, 

the data augmentation has been applied during network 

training. There were applied a few transformations: random 

scaling up to 60% change of the original image size, changes 

of hue, saturation, and exposure of the image were randomized 

in the range 0.1, 1.5, 1.5 respectively in the hue saturation 

value (HSV) model. A few hyper parameters such as batch 

size, learning rate, decay, iteration number, and detection 

thresholds have been tuned as well to get the best performance. 

Bounding boxes already have been specified in the original 

dataset in the darknet-compliant format. We have modified 

YOLO mark tool [20] and have used it to specify the 

orientation of vehicles on all images. Training has been carried 

out with the next parameters, batch size 64, momentum = 0.5, 

decay = 0.0001, base learning rate = 0.0001, and maximum 

iteration number = 30000. 

V. EXPERIMENTAL RESULTS 

For testing of the trained neural network we have used 

different sizes of an input image from 320 × 320 to 480 × 480 

with the step 32 pixels in the same way used during training 

for data augmentation. A small restriction for size to be 

divided by 32 is dictated by the feature extraction network 

architecture. Table 1 shows results for a few input sizes and 

for the confidence threshold 0.25. 

Our preliminary training runs have shown that the model 

reaches its best performance on the testing set at about 30000 

iterations and therefore we specified it as the maximum 

iterations number in order to avoid unnecessary iterations and 

additional overfitting of the model on the training set. 

Table 1.  Modified YOLOv3 performance on a testing set. 

Metrics 
Input Size 

320 × 320 416 × 416 480 × 480

IoU 86.22% 89.33% 89.97 

mAP 99% 99% 99% 

F1 score 0.99 0.99 0.87 

Ang. RMSE 0.1174 0.1079 0.1170 

 

The table contains the next information: a set of sizes of 

the input tensor; mAP is a mean average precision that means 

an averaged value on precision/recall curve calculated over 11 

points [0, 0.1, …, 1]; IoU is an intersection over union that is 

the ratio of an intersection area of a ground true bounding box 

and a predicted bounding box to area of union of these boxes, 

Ang. RMSE is the angular root mean square error, F1 score is 

the harmonic mean of precision and recall. 

One can see that the network has a quite high precision 

level. It has a slight dependence on the input image size in 

terms of localization and correct classification. 

It should be noted that unlike the original network [18] we 

have used a modified, bidirectional metric for calculation of 

the angular error. It means that instead of a single true value of 

a direction angle φ  rad. we accepted both values φ  rad. and 

π+φ  rad. and calculated the error to the closest of them. The 

logic behind this decision is the next: most of vehicles are 

quite hardly identified from the top view in terms correct 

front-rear orientation. For example the bus can look as a pure 

rectangle without any signs for a rear or a front. 

Fig. 1 shows several examples with detected vehicles 

surrounded by bounding boxes and supplied with estimated 

orientation angles represented by lines drawn from the center 

of each bounding box. 
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Fig. 1.  A sample photo with detected objects and estimated orientations. 

 

VI. CONCLUSION 

Presented modified YOLOv3 network has shown the high 

level of orientation estimation and the detection accuracy in 

the particular application for vehicles detection, even with 

relatively small training dataset. It has shown mean average 

precision almost 90% and angular root mean square error 0.11 

rad on the considered custom dataset. 
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