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Abstract— The presented paper benchmarks the performance 

of state-of-the-art methods of objects detection in the particular 

case of airplanes on the ground identification detection in aerial 

images taken from unmanned aerial vehicles or satellites. There 

were tested two popular single-stage neural networks YOLO v.3 

and Tiny YOLO v.3 based on the “You Only Look Once” 

approach. The considered artificial neural network architectures 

for objects detection has been trained and applied over the 

specifically created image database. Experimental verification 

proves their high detection ability, location precision and real-

time processing speed using modern graphics processing unit. 

That approach can be easily applied for detection of many 

different classes of ground objects. 

Index Terms— Convolutional neural network; object 

detection; real-time processing; unmanned aerial vehicle

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) play an important role in
many fields of human activity. UAVs can be either remote-
controlled aircraft (by a pilot at a ground) or fly autonomously 
driven by some flight program or controlled by a higher-level 
control system. 

UAV technology has many advantages that include low 
cost, small size, safety, ecological operation, and most of all, 
the fast and on-demand acquisition of images [1]. Most of all, 
they are an effective and powerful method of capturing high-
resolution remote sensing (RS) images [1-3]. The recent rapid 
advances of UAV technology led to many studies proposing 
many novel ways for UAV applications and image analysis in 
relation to corresponding areas including infrastructure 
surveillance, fire detection, vegetation monitoring, marine 
surface monitoring, nature changes observation, disasters 
management, traffic monitoring etc [3–7]. Most of them can be 
generally described as detection, recognition, and tracking of 
various objects of interest.  

In this paper, we consider the usage of modern 
convolutional neural network (CNN) architectures for the 
detection and classification of objects during autonomous UAV 
operations in civil fields. This paper shows the example of 
successful application of “You Only Look Once” YOLO and 
Tiny YOLO architectures on real-time airplanes detection on 
the ground from the video feed during UAV operation test. 

II. REVIEW OF EXISTING METHODS

Object detection is one of the fundamental tasks in 
computer vision and refers to the determination of the presence 
or absence of specific features in the image [8]. When features 
are detected, an object can be further classified as belonging to 
one of a pre-defined set of classes and then the bounding box 
around that object or object central point is predicted. 

There are roughly three types of object detectors: classic, 
two-stage, and one-stage ones. Classic detectors operate in the 
sliding window, in which a classifier is applied every time over 
a predefined image grid. The most known of them are CNN for 
digits recognition, proposed by LeCun et al [9]; Viola and 
Jones face detector [10] and the histogram of oriented gradients 
(HOG) method for pedestrian detection [11]. Later with the 
development of deep learning, they have been outperformed by 
two-stage detectors, described next. 

More recent approaches use region proposal methods to 
first generate a sparse set of candidate proposals that should 
contain all objects while filtering out the majority of negative 
locations in an image and then run a classifier on these 
proposals in order to separate them into foreground 
classes/background. Such two-stage detection is the dominant 
paradigm nowadays. Region-based convolutional neural 
networks (R-CNN) have grown over last years with several 
improvements [12-14] and numerous extensions [15-17]. 

Yet another modern approach to object detection assumes a 
single detection stage that is closer to the natural way of objects 
detection by humans. The three main methods can be 
mentioned here: SSD [18], YOLO [19, 20] and RetinaNet [21]. 
Roughly, their effectiveness grows in the same order. SSD has 
about 10-20% less average precision. YOLO (version 3) has 
almost the same precision as two-stage detectors and RetinaNet 
so far is the most effective state of the art object detector. 
However, YOLO v.3 is the fastest among them and still has 
acceptable precision. That is an important factor for 
autonomous UAVs as it will be described next. 

Coming back to UAVs operations, the self-controlled 
flying process can be divided into three stages. First, raw data 
is recorded during flight via sensors which an UAV is equipped 
with. Then the real-time data processing is performed by the 
onboard system. The final stage supposes autonomous 
decision-making based on the processed data. All stages should 
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be conducted in a few milliseconds. The crucial part here is the 
second stage, where the onboard system is supposed to detect 
and classify observed objects in real time. 

In this situation, the solution comes with usage of single-
stage detectors based on CNN. It worth to mention, that one of 
the superior features of CNNs is their parallel nature that 
perfectly fits the architecture of a graphical processing unit 
(GPU), which consists of thousands of cores designed to 
handle multiple tasks simultaneously. Their combination 
allows dramatic reduction of computation time while 
maintaining superb precision. 

In view of recent advances in GPU hardware development, 
price and size of the GPU units have been reduced 
considerably. This allows designing an integrated software-
hardware module capable of real-time processing, which is 
light and inexpensive enough to be mounted on an UAV.
However, before such incorporation, CNN needs to be trained 
and tested on the more powerful equipment. 

III. YOLO NEURAL NETWORK ARCHITECTURE

The CNN algorithm considered in this paper has been built 
on an open-source platform complied from the Darknet 
framework written in C and CUDA [22] that has an 
implementation of the YOLO architecture of the 3rd version 
[20] and it’s simplified version from the original paper [19]
with the enhanced classifier Tiny YOLO v.3. 

The main advantage of YOLO as a single-stage approach is 
that the single neural network evaluates the whole image. It 
makes all predictions based on the actual image, not the 
proposed regions as it goes for two-stage methods. The input 
image is represented as a tensor of size n × m × 3, where n and 
m represent width and height in pixel and 3 denotes three color 
channels). All input images of various sizes are automatically 
resized to 416 × 416; therefore, we used a 416 × 416 × 3 input 
tensor every time for training. Actually, that size can vary in 
certain range but those particular values give the output feature 
map with an odd number of cells with a single central cell as it 
will be described later. 

The network uses the backbone Darknet-53 that is a 53-
layer feature extracting deep neural network. Its structure is 
shown in Table 1. Faster or Tiny YOLO feature extractor 
architecture has a simplified structure with much less amount 
of layers, as it is shown in Table 2.

The procedure supposes that the picture is divided into the 
grid of equal cells of some size. For 416 × 416 input image, it 
is a grid of 13 × 13 cells. Each cell is responsible for prediction 
of some amount of bounding boxes that covers this cell. 

Each prediction of a bounding box contains the following 
information: coordinates of the bounding box, width, and 
height, that are calculated through predictions from cell 
coordinates and bounding box prior width and height as
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TABLE I. DARKNET-53 STRUCTURE

Type Filters Size Output

Convolutional 32 3×3 416×416

Convolutional 64 3×3/2 208×208

Convolutional 32 1×1

1× Convolutional 64 3×3

Residual 208×208

Convolutional 128 3×3/2 104×104

Convolutional 64 1×1

2× Convolutional 128 3×3

Residual 104×104

Convolutional 256 3×3/2 52×52

Convolutional 128 1×1

8× Convolutional 256 3×3

Residual 52×52

Convolutional 512 3×3/2 26×26

Convolutional 256 1×1

8× Convolutional 512 3×3

Residual 26×26

Convolutional 1024 3×3/2 13×13

Convolutional 512 1×1

4× Convolutional 1024 3×3

Residual 13×13

TABLE II. TINY YOLO FEATURE EXTRACTOR STRUCTURE

Type Filters Size Output

Convolutional 16 3×3/2 208×208

Convolutional 32 3×3/2 104×104

Convolutional 64 3×3/2 52×52

Convolutional 128 3×3/2 26×26

Convolutional 256 3×3/2 13×13

Convolutional 512 3×3/1 13×13

Besides coordinates, it predicts the probability that the 
bounding box contains the object and C probabilities of 
belonging to each of predefined C object classes. We suppose 
that each cell can predict up to 3 bounding boxes. Therefore, 
the final output tensor is 13 × 13 × [3* (5 + C)].  

Additionally, YOLO v.3 predicts boxes at 3 different scales 
for better detection of small objects. Tiny YOLO v.3 does the 
same, but for two scales only. Finally, duplicate detections are 
eliminated by non-maximal suppression. 

IV. CNN TRAINING

Although there are a few YOLO networks trained on 
several known datasets, the CNN still needs to be trained for 
better precision to work with objects specific to our particular 
tasks. A few task-specific parameters such as batch size, 
learning rate, decay, iteration number, and detection thresholds 
should be additionally tuned for the best performance. The 
number of epochs required for training was determined 
empirically. “Epoch” means a single run through the entire data 
set during training of a neural network. For batch training, the 
input data are fed to the network within batches that includes a 
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fixed number of samples (called as a “batch size”) and weights 
are updated every time it passes through the learning algorithm. 
“Learning rate” is a constant used to control the rate of learning 
or gradient descent. “Decay” refers to the ratio for decreasing 
learning rate at a certain number of epochs. 

Our networks (full and tiny) have been trained for only a 
single object class i.e. “airplane” (C = 1). That gives us a size 
of the first scale output tensor as 13 × 13 × 18. 

Preliminary analysis has shown that images with airplanes 
taken by UAVs differ significantly from the images available 
at common databases with a lot of objects. As an example,
many photos from the PASCAL VOC database are taken from 
the frontal or side view, while the images from UAV mostly 
from the top-down view. That promises a significant gain in 
performance between a network trained on those databases and 
the one trained on a custom database containing satellite and 
UAV-acquired images. For the data augmentation during 
network training, there were used a few transformations: 
random scaling up to 60% change of the original image size, 
changes of hue, saturation, and exposure of the image were 
randomized in the range 0.1, 1.5, 1.5 respectively in the hue 
saturation value (HSV) model. 

The custom database of images with objects of the class 
“airplanes” was created by capturing satellite images of 
airplanes grounded on civil and military airfields mostly across 
Europe from Google Maps. Example pictures from our 
database are shown in the Fig. 1 (pictures are taken after 
processing with bounding boxes painted around airplanes).
Additionally, there were downloaded several photos were taken 
from the air (mostly with not right angles, that better suits to 
actual operating conditions of low-altitude flying UAV) by 
browsing them on the Internet. Images from Internet were used 
due to current restrictions on operating UAVs in airfield 
proximity. 

These images consisted of a variety of airplane types, 
shapes and color schemes, with a wide range of image scales, 
resolutions, and compositions. For example, images were 
selected in a way to show airplanes as close as possible (when 
an airplane covers almost the whole image) and from large 
distances (when an airplane is a small spot on the image, but 
still recognizable by its shape). Images quality varies from HD 
to Full HD and size of airplane shapes on them varies from 
about ten pixels wide to hundreds of pixels. The most of 
images contain more than one airplane, sometimes with 
overlapped bounding boxes for tightly placed airplanes. All 
airplanes have been fully placed within frame boundaries. 
Cases, where only a part of the airplane is present on the image 
have been excluded from the training set or have not marked as 
airplanes. The rest simply have a single airplane. All images 
contain photos in daylight conditions. Image quality also varies 
from high-quality clean images to noisy and distorted by 
compression artifact images. The training set consists of 204 
images containing 1245 airplane objects in total. 

The open-source tool known as YOLO mark [23] was used 
to label all airplane instances in the dataset and specify ground 
truth bounding boxes. Training has been carried out with the 
next parameters, batch size 64, momentum = 0.5, decay = 
0.0005, base learning rate = 0.001, and maximum iteration 

number = 50000. Learning rate has been changed during 
training in a next way: 100% of the base on steps 0-39999, 
10% on steps 40000-44999, 1% on steps 45000-49999. 

Figure 1. Pictures examples from our database of photos with “airplanes”

V. EXPERIMENTAL RESULTS

For validation of the trained neural networks, a new data set 
of 50 images similar to the ones in the training set and 
containing a total of 203 airplanes was used. Both trained 
neural networks have been tested with different sizes of an 
input image from 224 × 224 to 608 × 608 with the step 32 
pixels. As far as the network is convolutional, the input tensor 
for it can be different sizes with a small restriction to be 
divided by 32. A such variability is an additional tool in finding 
a reasonable trade-off between desired speed and accuracy. 
Table 3 shows results for various cases for both YOLO v.3 and 
Tiny YOLO v.3 networks. There were carried out preliminary 
tests in order to avoid overfitting of the model. The best results 
(in terms of average precision) on the validation test have been 
obtained with the weights after 34000 iterations for YOLO v.3
and after 45300 iterations for Tiny YOLO v.3. 

The table contains the next information: a set of sizes of 
input tensor; mAP is a mean average precision that means an 
averaged value on precision/recall curve calculated over 11 
points [0, 0.1, …, 1]; IoU is an intersection over union that is 
the ratio of an intersection area of a ground true bounding box 
and a predicted bounding box to area of union of these boxes; 
FPS means processing speed frames per second (measured on 
the computer with the next hardware elements: CPU Intel Core 
i7-7700K, GPU NVIDIA 1060 6Gb, 16Gb RAM). Those 
parameters can be interpreted in the next way: mAP is an 
indicator of detection effectiveness, IoU is an indicator of 
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bounding boxes positioning precision, FPS is a common 
performance and speed indicator. 

TABLE III. YOLO V.3 AND TINY YOLO V.3 PERFORMANCE

Size mAP IoU FPS

YOLO v.3 

608 × 608 90.91% 85.44% 13

416 × 416 90.73% 84.56% 23

320 × 320 90.64% 81.83% 34

224 × 224 81.72% 78.32% 51

Tiny YOLO v.3

608 × 608 89.41% 80.18% 41

416 × 416 90.30% 79.75% 68

320 × 320 81.62% 78.83% 92

224 × 224 71.94% 78.46% 105

One can see that YOLO v.3 has a quite high precision level 
that is achievable even for a typical 25fps video. It has a slight 
dependence on the input tensor size. However, at the smallest 
size 224 × 224 there is a significant drop in the probability of 
detection. Tiny YOLO roughly is 2 times faster with slight 
drop of quality, especially in terms of mAP. But with the 
biggest input size, it can achieve a detection level comparable 
with YOLO v.3 at lower input sizes and still is faster. 

It should be mentioned, that the trained YOLO v.3 CNN 
was able to detect an airplane in the image, even if its contours 
were obscured by another object, for example, a tower on the 
ground, or in pretty different conditions, for example, photos of 
airplanes in the air taken from the bottom, but size in pixels of 
the airplane must be relatively big. If an airplane is not fully 
shown in the image, the network recognizes it only when most 
of it is present, that has been expected. 

On the other hand, when the size of the airplane image is 
distorted by compression artifacts, or when it has a livery or a 
shape not present in the training set it usually is missed by the 
network, especially at the low size of the airplane in the 
picture. Obviously, that can be overcome with the more 
thorough database, carefully selected, graded and cleaned of 
repetitive examples. 
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