
IEEE Third International Conference on Data Stream Mining & Processing
August 21-25, 2020, Lviv, Ukraine

978-1-7281-3214-3/20/$31.00 ©2020 IEEE 211

Augmented Reality in Web: Results and Challenges

Ruslan Timchenko
It-Jim

Kharkiv, Ukraine
timchenkoruslan97@gmail.com

Yurii Chyrka
It-Jim

Kharkiv, Ukraine
yurii.chyrka@it-jim.com

Oleksiy Grechnyev
It-Jim

Kharkiv, Ukraine
shrike4625@gmail.com

Sergiy Skuratovskyi
It-Jim

Kharkiv, Ukraine
ssnake@it-jim.com

Ievgen Gorovyi
It-Jim

Kharkiv, Ukraine
ceo@it-jim.com

Abstract—The paper presents basic concepts of augmented

reality applications and challenges in building them in the web.

We describe the technical and algorithmic stack required to

develop, implement and deploy the augmented reality

application. Theoretical concepts behind marker detection and

tracking are discussed. Two different pipelines are

implemented: server-based with algorithms execution in the

cloud and completely front-end solution that runs on a user

device. We show advantages and disadvantages of each

approach and analyze experimental results as well.

Keywords—augmented reality, visual tracking, image marker,

webAR

I. INTRODUCTION

Augmented Reality (AR) is the technology that connects
our real life with a digital world. Extending reality is possible
by overlying layers with virtual objects over the screen of user
devices [1]. Different kind of information can be augmented:
text, video, images, audio and both static and dynamic 3d
models [2]

Since most of the information comes through the human
visual system, AR is becoming more and more widespread. Its
strength is already demonstrated in a variety of areas:
advertising [3], game industry [1, 4], education [5], medicine
[6], entertainment [4, 7-9].

Two important points are taken into consideration during
the development of the AR system: technical solutions and
hardware platforms used. Several typical computer vision
problems are usually solved during the construction of the AR
framework. In particular, object detection and recognition
(planar markers or arbitrary objects) [2], content-based image
retrieval [10] for visual search, simultaneous localization and
mapping (SLAM) for 3D object detection [11], markerless
tracking and multi-player AR applications [12]. The second
point is where to utilize AR technology, i.e. what device to
use: mobile phone or tablet, AR glasses, desktop.

There are plenty of different mobile AR systems like
ARKit, ARCore, Vuforia, EasyAR, etc. Most of them require
installation of the mobile application for AR experience. In the
paper, we describe an alternative way to use AR technology:
augmented reality in a browser, or web AR [13, 14]. Indeed,
the obvious advantage of AR in a mobile browser is instant
immersion without need to install any mobile applications.

The paper is structured as follows. The problem of planar
marker recognition for AR is discussed in section II. In
particular, we consider a typical keypoint-based detection
algorithm and analyze various local feature descriptors. In
addition, we introduce a hybrid tracking approach which
combines sparse optical flow [15] and template-based tracker
[2]. The created algorithmic pipeline and its deployment into
web AR application are described in section III. We consider
two separate architectures: server-based one with algorithm
execution in the cloud and pure front-end solution that runs on
a user device. We also analyze their strong and weak sides.
Finally, experimental results are shown in section IV.

II. COMPUTER VISION SOLUTIONS FOR MARKER-BASED

AUGMENTED REALITY

In order to render AR model correctly over the frames from
the camera we need to estimate its position. In the case of
marker-based AR, the planar marker position in the frame
should be known. Hence, we start with the marker detection.
Once the marker is found, we track its position in consequent
video frames. The marker position in the frame is used to
calculate the homography transformation matrix and estimate
6 degrees of freedom (6 DoF) camera position from it.

A. Marker Detection

The estimation of extrinsic camera parameters starts with
the detection of the marker position in the scene. By marker
we mean not some binary pattern, but a certain image. The
fast and robust solution for image marker detection is based
on local features. There are plenty techniques for keypoints
detection and description. Here we analyzed two of them:
ORB [16] and AKAZE [17].

The use of ORB features provides the fastest marker
detection procedure comparing to analogues. For the
keypoint detection, the oriented FAST [18] is applied in
combination with the image pyramid. The local patch around
the keypoint is characterized by binary ORB descriptor (Fig.
1, a). It is based on the steered version of BRIEF [19] with
binary tests analyzed for correlation to provide more
distinctive features.

AKAZE for now is the optimal combination between
speed and accuracy. It incorporates fast explicit diffusion,
which provides more efficient scale space forming than in
SIFT and KAZE. The modified version of LDB descriptor

212

[20] (Fig. 1, b) provides a rotation invariance and preserves
computational efficiency without the use of integral images.
Scale-dependent sub-sampling (small squares in Fig. 1, b) is
used instead of calculating the average value of each area
(large squares).

To compare the efficiency of matching ORB and AKAZE
features, we used our company business card as a marker
(Fig. 2). The keypoint locations were the same in both cases,
thus only descriptors and their matching affected the result.
The 50 best matches are represented in Fig. 2.

 a b

Fig. 1. ORB (a) and M-LDB (b) descriptors.

Fig. 2. Keypoint matching with ORB (upper) and AKAZE (lower).

It is clear that AKAZE provides more reliable matches.
Still, most of ORB matches are also good, so random sample
consensus (RANSAC) or a similar technique provides a good
estimation of the homography matrix in this case, too. And as
computation time is crucial for AR in general and WebAR in
particular, ORB is our tool of choice.

B. Tracking

Marker detection is a time-consuming operation.
Moreover, typical keypoint descriptors handle quite limited
view angles [2], and detection fails, which results in a bad AR
experience of a user.

To solve both problems, marker tracking algorithms are
typically used [2, 15,21]. A common way to track inter frame
changes is to use sparse optical flow (OF) methods [2, 23].
This is accomplished by matching adjacent frames instead of
straightforward comparison of the reference marker image
with the camera frame image, which is not efficient.

A common problem of OF methods in AR applications is
the drift of estimated pixel locations. This leads to incorrect
camera pose estimation and, as a result, incorrect AR model
augmentation. To improve the robustness of our planar

tracker, we utilized a template-based tracking called the sum
of conditional variances (SCV) [22]. It is an iterative
approach, which is used to refine the residual error in
homography estimation after OF application.

The proposed fusion of two different trackers leads to a
robust tracking.

Firstly, OF is applied to estimate initial homography between
adjacent frames. Secondly, SCV refinement is used to receive
more accurate warping between the frames (Fig. 3). Such
combination allows to compensate OF drift and handles
extremal view angles.

Fig. 3. Two-step homography estimation.

C. Camera Pose Estimation

Camera pose estimation is the primary element of AR
system that affects the correct rendering of models. Thus, it
should be precisely retrieved from the camera frames [2].

Let’s consider the common projective geometry for the
pinhole camera model [13]. The camera projects points from
the 3D world (x,y,z) into a 2D pixel in the image plane (u, v,
w). Here w is a scale parameter for homogeneous coordinates.
This transformation can be written as follows:

 ቈݓݓݒݓݑ ቉ ൌ ൥ ௫݂ 0 ܿ௫0 ௬݂ ܿ௬0 0 1 ൩ ൥ݎଵଵ ଵଶݎ ଵଷݎ ଶଵݎ௫ݐ ଶଶݎ ଶଷݎ ଷଵݎ௬ݐ ଷଶݎ ଷଷݎ ௭൩ݐ ቎
 1቏ (1)ݖݕݔ

where cx, cy denote the origin of image coordinates, in our
application they are equal to zero; fx, fy are focal lengths of the
camera, responsible for the scaling (zooming). The first matrix
is the intrinsic one, which is independent on the scene. It is
specific for the particular camera device and can be found
once during the camera calibration [14]. The next matrix is the
extrinsic one. It contains the camera pose, describing
transformation from the world coordinates to the camera
coordinate system. The camera pose consists of a translational
displacement of the camera (t-vector) and its orientation (r-
elements), which represents the transformation (translation
and rotation) between the world and the camera coordinate
systems.

 Let’s consider how the marker location in the frame is used
to retrieve the camera pose. It is known that the transformation
between the planar object locations in two images can be
described with the homography matrix [2]:

,ᇱݑᇱሺܯ ᇱሻݒ ൌ ܪ ൈ ,ݑሺܯ ሻݒ ൌ ൥݄ଵଵ ݄ଵଶ ݄ଵଷ݄ଶଵ ݄ଶଶ ݄ଶଷ݄ଷଵ ݄ଷଶ 1 ൩ܯሺݑ, ሻ (2)ݒ

 Here, M and M’ are the original marker and the warped
marker on the frame, their pixel coordinates are represented as
(u,v) and (u`,v`) respectively.

 The matrix elements are found from matching keypoints
in two pictures. Some matches may be wrong, so we used

213

RANSAC to drop out the outliers and get the right
homography.

 Homography is a more generic operation compared to the
6 DoF of camera pose (3x1 translation vector and 3x1 rotation
vector). So, it is possible to convert homography into a camera
pose. The corners of marker are linked with the homography
projected ones onto the frame. This set of points is used to
estimate rotations and translation vectors basing on
Levenberg-Marquardt optimization [24, 25]. The method
iteratively minimizes the pixel reprojection error points,
represented as the sum of squared distances between the
corresponding images.

Fig. 4. Example of 3D model augmentation: image marker (left), 3D
model over the detected marker (right)

Fig. 5. The main algorithm pipeline.

As a result, 6 DoF camera pose is constantly updated based on
the applied planar marker detection and tracking procedures.
The estimated camera pose is used to render the AR content.
An example of image and 3D model rendering is shown in the
Fig. 4.

III. CREATED PIPELINE AND ITS IMPLEMENTATIONS

 In this section, we consider practical aspects of integration
of developed computer vision algorithms and discuss
important details of web AR system architecture.

A. High-level Scheme of Camera Frames Processing

The described technical solutions were combined into the
following pipeline (Fig. 5).

For a given camera frame, either marker detection or
tracking algorithms are used. The homography matrix
between marker and camera frame is constantly updated.
Finally, the camera pose is estimated in real-time providing
the information for AR models rendering in the browser
window.

We have created two conceptually different deployments:
a front-end-back-end with algorithms running in the cloud

and a purely front-end pipeline. The next sub-section
describes those two ways of deployment in details.

B. Frontend-Backend Approach

At the front end, we have an outgoing and incoming data
streams. Therefore, we divided front end operations into two
independent asynchronous threads: camera rendering and
model rendering (Fig. 6). Unlike the single sequential thread,
when we show video frames after the server response, in this
case 3D model is overlaid over the live video stream without
any delays and freezes. This approach looks better for a user
and provide more opportunities.

The first thread takes a frame from the device camera and
immediately displays it on the web page. To use a video
stream from the camera, the browser must ensure that the
requested web page is safe, thus only HTTPS pages with a
SSL/TSL certificate are allowed to access the camera. The
captured frame is downsized and converted to JPEG format.
At the end, the processed frame is sent to the back end via a
secure websocket (wss).

Fig. 6. Frontend architecture. Camera and rendererasynchronical threads.

The second thread, named ‘model render thread’, receives
JSON packets from the server. They contain an ID of the
identified marker (if there is no marker in the frame, it is equal
to -1) and the camera parameters. The latter depend on the
render library. In our case, ThreeJS library [26] was used,
which creates a camera object by three vectors: ‘position’,
‘lookAt’ and ‘up’.

 The calculation of Three JS camera pose has a few
important moments. The first is the freedom to choose a render
formalism. That means the choice between ‘moving the
model’ and ‘moving the camera’. We prefer to move camera
rather than the model, because this way is more similar to the
real camera moving. Thus, the camera position tcam is
calculated as tcam = -R-1t, where t is the camera translation for
the stationary model described above in the camera pose (1).

 The second moment is the usage of left-handed system in
contrast with the right-handed one in OpenCV library that was
used in C++ pipeline implementation. So, we have to change
the sign of z-component of the camera position.

 The ‘lookAt’ vector indicates the point the camera is
facing at, the ‘up’ vector determines the rotation of the camera
view. Both vectors can be found from inverse perspective
projection transformation (u,v) → (x,y,z). There is an infinite
number of solutions, so for simplicity we assume that marker
is located in xy0 plane. Considering F: (u,v) → (x,y,0), we then
project p0 = F(0, 0), p1 = F(0, 1). p0 is the viewport center and

214

represents the ‘lookAt’ vector, while up = p1 - p0 determines
the ‘up’ vector.

The back-end is implemented using Java and Spring Boot. Its
architecture is shown in the Fig. 7. It communicates with the
front-end via secure web sockets only. For each web session,
a separate engine object is created (a wrapper to C++
algorithms), thus the server can process multiple sessions
correctly. The engine performs all steps of frame processing,
including detection, tracking and calculation of camera pose.
At the end, it sends information to the front-end.

Fig. 7. Server structure.

Fig. 8. The architecture of the pure front-end solution.

C. Frontend-only Architecture

To avoid the main problem of the previous architecture,
the lag introduced by the network latency, we made a front-
end only solution (Fig. 8).

In this way, there is no lag (i.e. transferring an encoded
frame to the server and an array of numbers back). On the
other hand, all files (including bulky 3D models) have to be
downloaded before the web application starts. The required
time depends mostly on the user’s connection speed and can
be quite long.

This application consists of separate JS modules and
WebAssembly files [27]. Here the backend server is
absolutely replaced by the wasm file, which was compiled
from C++ project with the main algorithm pipeline [28].

WebAssembly is an open standard that defines a portable
binary-code to run natively in browsers. In order to compile
C++ project, we used Emscripten SDK [29]. It is a suitable
instrument to call C++ functions from JavaScript side, and
often the speed of procedures is higher than of pure JavaScript.

Fortunately, our architecture has not changed much and it
keeps the primary logic of the previous architecture
unchanged. The only difference is that a user now downloads
all files and does all the calculations in the browser.

D. Architecture Summary

A brief summary with the strong and weak sides of each
solution are presented in the Table 1. On its basis, one can
select any of the solutions for the particular case that is most
suitable for the specified conditions.

The frontend-backend solution is the best when we need
complicated processing (potentially including some neural
networks) or when we want to cover as much devices as
possible, regardless of their hardware computational
performance. However, it requires a stable connection during
an AR session for unceasing data stream. Moreover, it can be
very costly in two scenarios: either we want to run our
application worldwide (then we need to deploy it over
multiple servers over the globe to minimize the network
latency between users and the nearest servers)or we want to
serve a lot of users simultaneously(then we need to run a
powerful backend server).

TABLE I. PROS AND CONS OF ARCHITECTURE TYPES

 Pros Cons

Frontend-

backend

- Provides better
performance
- Allows to run heavy
algorithms
- Covers weak devices

- Network latency
- Requires a reliable
connection
- Costly in multiuser and
worldwide usage
scenarios

Frontend-

only

- No network lags
- Runs independently from
the network
- Easier implementation

- Requires a powerful
hardware
- Downloads heavy
models

The frontend-only solution is easier to implement and has

a rather weak dependency on the network connection. Once
the user gets all the necessary data from the server, the
network can be turned off and the web page with AR
application will still operate offline in the browser. To enjoy
AR experience, the user has to run it on a powerful modern
device with a few gigabytes of RAM (it depends on the weight
of the models) and mid to high level system-on-chip (SoC).

IV. EXPERIMENTAL RESULTS

This section contains some relevant information about
benchmarking of utilized computer vision solutions as well
as performance tests of the AR system.

A. Benchmarks for Marker Detectors

To compare different detectors and find their optimal
parameters, we have conducted a number of experiments
changing detector parameters. We tuned the input image size,
number of pyramid levels (octaves) and looked at the
dependence on the number of features. As our target is mobile
devices, we need to be sure that their computational power is
sufficient to use our application in real time and balance
between the detection quality and the algorithm speed.

215

Considering the results, presented in Fig.9 – Fig.11, we
have chosen ORB detector with 1000 keypoints and 8 scale
levels for 730x410 resolution.

We tested the performance on preliminary recorded videos
with markers in various positions. The quality metrics was
defined as the ratio of frames with detected markers to the total
number of frames in the video sample. The successful
detection is registered if the average distance of 20 best
matches is below a certain threshold (32.0 in our model).

B. Performance Tests for Frontend-Backend Architecture

We have tested the influence of the backend server’s
computational power on the execution time. The results for
two types of AWS instances are shown in Table 2. FPS is the
time it takes a frame to complete the entire pipeline with
rendering. When a marker is present in the scene, FPS is
determined mostly by tracking. If there is no marker, tracking
is impossible, and only detection affects speed.

Although FPS is quite high, there is a significant lag
between the camera and the render threads. The main problem
here is not C++ algorithms, but quality and stability of the
internet connection between the browser and the back-end

server. The lag mainly stems from the network latency, which
varies for different conditions. A delay of a few frames (0.1-
0.2s) was very common in our case. In addition, some frames
may be lost on the server.

Fig. 9. FPS dependence on the image resolution and a detector type.

Fig. 10. Accuracy provided by ORB and AKAZE dependion on input image resolution and a number of levels.

TABLE II. TIMING ON DIFFERENT AWS INSTANCES

Functions T2 small T2 large

Detection (marker) 120 ms 77 ms

Detection (no marker) 100 ms 46 ms

Tracking 5 ms 4 ms

Decode JPEG 1.2 ms 1.0 ms

Camera pose estimation 0.3 ms 0.2 ms

FPS (marker) ~20 ~20

FPS (no marker) 6-7 >10

Unfortunately, network latency can be reduced only by
decreasing the distance between the geographical positions of
user and server.

C. Performance Tests for Serverless Architecture

In the serverless solution, the performance is determined
by the device (e.g. cell phone) capabilities and does not
depend on any server where the web page is located.

For testing, we used a laptop with Intel Core i5-8250U
CPU at 1.60GHz. The results are demonstrated in Table 3. It
is about as powerful as modern high-end mobile devices. The

performance of the majority of devices is expected to be
worse.

TABLE III. TIMING ON THE USER’S LAPTOP

Functions Time

Detection (1 marker) 150-250 ms

Tracking 15-25 ms

Rendering 10-30 ms

Memory management 1-2 ms

FPS (marker) ~16

FPS (no marker) 3-5

As the resulting timing depends on the current load of the

user’s CPU, we give the time ranges. WebAssembly reduces
the speed of detection and tracking compared to the original
C++ code.

V. CONCLUSIONS

We described the important elements required to build a web-
based AR application. The applied computer vision solutions
were analyzed and discussed. Two different architectures for

216

the AR system were proposed. The developed AR pipeline is
flexible and extendable. We are planning to integrate a new
group of computer vision and machine learning algorithms for
face tracking, text recognition, arbitrary 2D/3D object
recognition in the near future. In addition, additional work will
be done for the algorithm optimization, which is crucial for
the application running in a mobile browser.

Fig. 11. Accuracy of detectors depending on the Image Resolution. For each
resolution was chosen the best properties provided the large number of
detected frames.

REFERENCES

[1] V. Vovk et al., “Light-Weight Tracker for Sports Applications”

Proceedings of Signal Processing Symposium, 17-19 September,
Krakow, Poland, pp.255-259, 2019.

[2] I. Gorovyi et al., “Advanced Image Tracking Approach for Augmented
Reality Applications” Proceedings of Signal Processing Symposium,
12-14 September, Jachranka, Poland, pp.266-270, 2017.

[3] Y.-G. Kim and W.-J. Kim, “Implementation of augmented reality
system for smartphone advertisements,” Int. J. Multimedia Ubiquitous
Eng., vol. 9, no. 2, pp. 385–392, 2014.

[4] (Jan. 2017). Augmented/Virtual Reality Report 2017. Accessed: Feb.
17, 2018. [Online]. Available: https://www.digi-capital.com/reports

[5] B. Perry, “Gamifying French language learning: A case study
examining a quest-based, augmented reality mobile learning-tool,”
Procedia-Social Behav. Sci., vol. 174, pp. 2308–2315, 2015

[6] Ha, Ho-Gun & Hong, Jaesung. (2016). Augmented Reality in
Medicine. Hanyang Medical Reviews. 36. 242.
10.7599/hmr.2016.36.4.242.

[7] Pokémon GO Report. Accessed: Mar. 5, 2018. [Online]. Available:
https://pokemongolive.com/en/post/headsup

[8] Z. Shi, H. Wang, W. Wei, X. Zheng, M. Zhao, and J. Zhao, “A novel
individual location recommendation system based on mobile
augmented reality,” in Proc. IEEE Int. Conf. Identificat., Inf., Knowl.
Internet Things (IIKI), Oct. 2015, pp. 215–218.

[9] N. Gavish et al., “Evaluating virtual reality and augmented reality
training for industrial maintenance and assembly tasks,” Interact.
Learn. Environ., vol. 23, no. 6, pp. 778–798, 2015.

[10] M. A. Tahoun, et al., "A robust content-based image retrieval system
using multiple features representations," Proceedings. 2005 IEEE

Networking, Sensing and Control, 2005., Tucson, AZ, 2005, pp. 116-
122.

[11] H. Durrant, T. Bailey. “Simultaneous localization and mapping: Part
I”, IEEE Robotics & Automation, (2006), pp. 99-108.

[12] Nowacki, Paweł & Woda, Marek. (2020). “Capabilities of ARCore and
ARKit Platforms for AR/VR Applications”. 10.1007/978-3-030-
19501-4_36.

[13] Qiao, Xiuquan & Pei, Ren & Dustdar, Schahram & Liu, Ling & Ma,
Huadong & Junliang, Chen. (2019). Web AR: A Promising Future for
Mobile Augmented Reality - State of the Art, Challenges, and Insights.
Proceedings of the IEEE. 107. 1-16. 10.1109/JPROC.2019.2895105.

[14] A. Charland and B. Leroux, “Mobile application development: Web vs.
native,” Commun. ACM, vol. 54, no. 5, pp. 49–53, May 2011

[15] Senst, Tobias & Eiselein, Volker & Sikora, Thomas. (2012). Robust
Local Optical Flow for Feature Tracking. IEEE Transactions on
Circuits and Systems for Video Technology. 22.
10.1109/TCSVT.2012.2202070.

[16] 9. E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Gary, ORB: an
efficient alternative to SIFT or SURF. Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2011, pp. 2564-
2571. doi 10.1109/ICCV.2011.6126544

[17] P. F. Alcantarilla, J. Nuevo, A. Bartoli, Fast Explicit Diffusion for
Accelerated Features in Nonlinear Scale Spaces. 2013, British Machine
Vision Conference (BMVC). doi 10.5244/C.27.13.

[18] E. Rosten, T. Drummond. Machine learning for high-speed corner
detection. European Conference on Computer Vision (ECCV), 2006,
pp. 430-443.

[19] M. Calonder, V. Lepetit, C. Strecha, P. Fua, Brief: Binary robust
independent elementary features. European Conference on Computer
Vision (ECCV), 2010, pp. 778-792.

[20] X. Yang, K. T. Cheng, LDB: An ultra-fast feature for scalable
augmented reality. IEEE and ACM Intl. Sym. on Mixed and
Augmented Reality (ISMAR), 2012. doi
10.1109/ISMAR.2012.6402537

[21] Bertrand Delabarre, Eric Marchand. Visual Servoing using the Sum of
Conditional Variance. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, IROS’12, 2012, Vilamoura, Portugal. pp.1689-1694. ffhal-
00750602f

[22] Richa, Rogerio & Sznitman, Raphael & Taylor, Russell & Hager,
Gregory. (2011). Visual tracking using the sum of conditional variance.
IEEE International Conference on Intelligent Robots and Systems.
2953-2958. 10.1109/IROS.2011.6094650.

[23] OpenCV. Open Source Computer Vision Library. 2015.

[24] Levenberg, K.: A method for the solution of certain non-linear
problems in least-squares. Quarterly of Applied Mathematics 2 (1944)
164–168

[25] Marquardt, D.: An algorithm for the least-squares estimation for non-
linear parameters. SIAM J. Applied Mathematics 11 (1963) 431–441

[26] Dirksen, Jos (2013). Learning Three.js: The JavaScript 3D Library for
WebGL. UK: Packt Publishing. ISBN 9781782166283.

[27] A. Haas et al., “Bringing the web up to speed with WebAssembly,” in
Proc. 38th ACM SIGPLAN Conf. Program. Language Design
Implement., 2017, pp. 185–200.

[28] A. Møller, “Technical perspective: WebAssembly: A quiet revolution
of the Web,” Commun. ACM, vol. 61, no. 12, p. 106, 2018.

[29] Alon Zakai. “Emscripten: an LLVM-to-JavaScript compiler. In
Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications
companion”. Association for Computing Machinery, New York, NY,
USA, 301–312. 2011

