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Abstract—The paper presents basic concepts of augmented 

reality applications and challenges in building them in the web. 

We describe the technical and algorithmic stack required to 

develop, implement and deploy the augmented reality 

application. Theoretical concepts behind marker detection and 

tracking are discussed. Two different pipelines are 

implemented: server-based with algorithms execution in the 

cloud and completely front-end solution that runs on a user 

device. We show advantages and disadvantages of each 

approach and analyze experimental results as well. 
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I. INTRODUCTION  

Augmented Reality (AR) is the technology that connects 
our real life with a digital world. Extending reality is possible 
by overlying layers with virtual objects over the screen of user 
devices [1]. Different kind of information can be augmented: 
text, video, images, audio and both static and dynamic 3d 
models [2]  

Since most of the information comes through the human 
visual system, AR is becoming more and more widespread. Its 
strength is already demonstrated in a variety of areas: 
advertising [3], game industry [1, 4], education [5], medicine 
[6], entertainment [4, 7-9].  

Two important points are taken into consideration during 
the development of the AR system: technical solutions and 
hardware platforms used. Several typical computer vision 
problems are usually solved during the construction of the AR 
framework. In particular, object detection and recognition 
(planar markers or arbitrary objects) [2], content-based image 
retrieval [10] for visual search, simultaneous localization and 
mapping (SLAM) for 3D object detection [11], markerless 
tracking and multi-player AR applications [12]. The second 
point is where to utilize AR technology, i.e. what device to 
use: mobile phone or tablet, AR glasses, desktop.  

There are plenty of different mobile AR systems like 
ARKit, ARCore, Vuforia, EasyAR, etc. Most of them require 
installation of the mobile application for AR experience. In the 
paper, we describe an alternative way to use AR technology: 
augmented reality in a browser, or web AR [13, 14]. Indeed, 
the obvious advantage of AR in a mobile browser is instant 
immersion without need to install any mobile applications. 

The paper is structured as follows. The problem of planar 
marker recognition for AR is discussed in section II. In 
particular, we consider a typical keypoint-based detection 
algorithm and analyze various local feature descriptors. In 
addition, we introduce a hybrid tracking approach which 
combines sparse optical flow [15] and template-based tracker 
[2]. The created algorithmic pipeline and its deployment into 
web AR application are described in section III. We consider 
two separate architectures: server-based one with algorithm 
execution in the cloud and pure front-end solution that runs on 
a user device. We also analyze their strong and weak sides. 
Finally, experimental results are shown in section IV.  

II. COMPUTER VISION SOLUTIONS FOR MARKER-BASED 

AUGMENTED REALITY 

In order to render AR model correctly over the frames from 
the camera we need to estimate its position. In the case of 
marker-based AR, the planar marker position in the frame 
should be known. Hence, we start with the marker detection. 
Once the marker is found, we track its position in consequent 
video frames. The marker position in the frame is used to 
calculate the homography transformation matrix and estimate 
6 degrees of freedom (6 DoF) camera position from it. 

A. Marker Detection 

The estimation of extrinsic camera parameters starts with 
the detection of the marker position in the scene. By marker 
we mean not some binary pattern, but a certain image. The 
fast and robust solution for image marker detection is based 
on local features. There are plenty techniques for keypoints 
detection and description. Here we analyzed two of them: 
ORB [16] and AKAZE [17]. 

The use of ORB features provides the fastest marker 
detection procedure comparing to analogues. For the 
keypoint detection, the oriented FAST [18] is applied in 
combination with the image pyramid. The local patch around 
the keypoint is characterized by binary ORB descriptor (Fig. 
1, a). It is based on the steered version of BRIEF [19] with 
binary tests analyzed for correlation to provide more 
distinctive features. 

AKAZE for now is the optimal combination between 
speed and accuracy. It incorporates fast explicit diffusion, 
which provides more efficient scale space forming than in 
SIFT and KAZE. The modified version of LDB descriptor 
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[20] (Fig. 1, b) provides a rotation invariance and preserves 
computational efficiency without the use of integral images. 
Scale-dependent sub-sampling (small squares in Fig. 1, b) is 
used instead of calculating the average value of each area 
(large squares). 

To compare the efficiency of matching ORB and AKAZE 
features, we used our company business card as a marker 
(Fig. 2). The keypoint locations were the same in both cases, 
thus only descriptors and their matching affected the result. 
The 50 best matches are represented in Fig. 2. 

       

                 a                                                b 

Fig. 1. ORB (a) and M-LDB (b) descriptors. 

 

 

 

Fig. 2. Keypoint matching with ORB (upper) and AKAZE (lower). 

It is clear that AKAZE provides more reliable matches. 
Still, most of ORB matches are also good, so random sample 
consensus (RANSAC) or a similar technique provides a good 
estimation of the homography matrix in this case, too. And as 
computation time is crucial for AR in general and WebAR in 
particular, ORB is our tool of choice. 

B. Tracking 

Marker detection is a time-consuming operation. 
Moreover, typical keypoint descriptors handle quite limited 
view angles [2], and detection fails, which results in a bad AR 
experience of a user.  

To solve both problems, marker tracking algorithms are 
typically used [2, 15,21]. A common way to track inter frame 
changes is to use sparse optical flow (OF) methods [2, 23]. 
This is accomplished by matching adjacent frames instead of 
straightforward comparison of the reference marker image 
with the camera frame image, which is not efficient.  

A common problem of OF methods in AR applications is 
the drift of estimated pixel locations. This leads to incorrect 
camera pose estimation and, as a result, incorrect AR model 
augmentation. To improve the robustness of our planar 

tracker, we utilized a template-based tracking called the sum 
of conditional variances (SCV) [22]. It is an iterative 
approach, which is used to refine the residual error in 
homography estimation after OF application.  

The proposed fusion of two different trackers leads to a 
robust tracking. 

Firstly, OF is applied to estimate initial homography between 
adjacent frames. Secondly, SCV refinement is used to receive 
more accurate warping between the frames (Fig. 3). Such 
combination allows to compensate OF drift and handles 
extremal view angles.  

 

Fig. 3. Two-step homography estimation. 

C. Camera Pose Estimation 

Camera pose estimation is the primary element of AR 
system that affects the correct rendering of models. Thus, it 
should be precisely retrieved from the camera frames [2]. 

Let’s consider the common projective geometry for the 
pinhole camera model [13]. The camera projects points from 
the 3D world (x,y,z) into a 2D pixel in the image plane (u, v, 
w). Here w is a scale parameter for homogeneous coordinates. 
This transformation can be written as follows: 

 ቈݓݓݒݓݑ ቉ ൌ ൥ ௫݂ 0 ܿ௫0 ௬݂ ܿ௬0 0 1 ൩ ൥ݎଵଵ ଵଶݎ ଵଷݎ ଶଵݎ௫ݐ ଶଶݎ ଶଷݎ ଷଵݎ௬ݐ ଷଶݎ ଷଷݎ ௭൩ݐ ቎
 1቏ (1)ݖݕݔ

where cx, cy denote the origin of image coordinates, in our 
application they are equal to zero; fx, fy are focal lengths of the 
camera, responsible for the scaling (zooming). The first matrix 
is the intrinsic one, which is independent on the scene. It is 
specific for the particular camera device and can be found 
once during the camera calibration [14]. The next matrix is the 
extrinsic one. It contains the camera pose, describing 
transformation from the world coordinates to the camera 
coordinate system. The camera pose consists of a translational 
displacement of the camera (t-vector) and its orientation (r-
elements), which represents the transformation (translation 
and rotation) between the world and the camera coordinate 
systems. 

 Let’s consider how the marker location in the frame is used 
to retrieve the camera pose. It is known that the transformation 
between the planar object locations in two images can be 
described with the homography matrix [2]: 

,ᇱݑᇱሺܯ ᇱሻݒ ൌ ܪ ൈ ,ݑሺܯ ሻݒ ൌ ൥݄ଵଵ ݄ଵଶ ݄ଵଷ݄ଶଵ ݄ଶଶ ݄ଶଷ݄ଷଵ ݄ଷଶ 1 ൩ܯሺݑ,  ሻ (2)ݒ

 Here, M and M’ are the original marker and the warped 
marker on the frame, their pixel coordinates are represented as 
(u,v) and (u`,v`) respectively.  

 The matrix elements are found from matching keypoints 
in two pictures. Some matches may be wrong, so we used 
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RANSAC to drop out the outliers and get the right 
homography. 

 Homography is a more generic operation compared to the 
6 DoF of camera pose (3x1 translation vector and 3x1 rotation 
vector). So, it is possible to convert homography into a camera 
pose. The corners of marker are linked with the homography 
projected ones onto the frame. This set of points is used to 
estimate rotations and translation vectors basing on 
Levenberg-Marquardt optimization [24, 25]. The method 
iteratively minimizes the pixel reprojection error points, 
represented as the sum of squared distances between the 
corresponding images.  

    

Fig. 4. Example of 3D model augmentation: image marker (left), 3D 
model over the detected marker (right)  

 

 
Fig. 5.  The main algorithm pipeline. 

As a result, 6 DoF camera pose is constantly updated based on 
the applied planar marker detection and tracking procedures. 
The estimated camera pose is used to render the AR content. 
An example of image and 3D model rendering is shown in the 
Fig. 4. 

III. CREATED PIPELINE AND ITS IMPLEMENTATIONS 

 In this section, we consider practical aspects of integration 
of developed computer vision algorithms and discuss 
important details of web AR system architecture. 

A. High-level Scheme of Camera Frames Processing 

The described technical solutions were combined into the 
following pipeline (Fig. 5). 

For a given camera frame, either marker detection or 
tracking algorithms are used. The homography matrix 
between marker and camera frame is constantly updated. 
Finally, the camera pose is estimated in real-time providing 
the information for AR models rendering in the browser 
window. 

We have created two conceptually different deployments: 
a front-end-back-end with algorithms running in the cloud 

and a purely front-end pipeline. The next sub-section 
describes those two ways of deployment in details. 

B. Frontend-Backend Approach 

At the front end, we have an outgoing and incoming data 
streams. Therefore, we divided front end operations into two 
independent asynchronous threads: camera rendering and 
model rendering (Fig. 6). Unlike the single sequential thread, 
when we show video frames after the server response, in this 
case 3D model is overlaid over the live video stream without 
any delays and freezes. This approach looks better for a user 
and provide more opportunities. 

The first thread takes a frame from the device camera and 
immediately displays it on the web page. To use a video 
stream from the camera, the browser must ensure that the 
requested web page is safe, thus only HTTPS pages with a 
SSL/TSL certificate are allowed to access the camera. The 
captured frame is downsized and converted to JPEG format. 
At the end, the processed frame is sent to the back end via a 
secure websocket (wss).  

 
Fig. 6. Frontend architecture. Camera and rendererasynchronical threads. 

The second thread, named ‘model render thread’, receives 
JSON packets from the server. They contain an ID of the 
identified marker (if there is no marker in the frame, it is equal 
to -1) and the camera parameters. The latter depend on the 
render library. In our case, ThreeJS library [26] was used, 
which creates a camera object by three vectors: ‘position’, 
‘lookAt’ and ‘up’. 

 The calculation of Three JS camera pose has a few 
important moments. The first is the freedom to choose a render 
formalism. That means the choice between ‘moving the 
model’ and ‘moving the camera’. We prefer to move camera 
rather than the model, because this way is more similar to the 
real camera moving. Thus, the camera position tcam is 
calculated as tcam = -R-1t, where t is the camera translation for 
the stationary model described above in the camera pose (1). 

 The second moment is the usage of left-handed system in 
contrast with the right-handed one in OpenCV library that was 
used in C++ pipeline implementation. So, we have to change 
the sign of z-component of the camera position. 

 The ‘lookAt’ vector indicates the point the camera is 
facing at, the ‘up’ vector determines the rotation of the camera 
view. Both vectors can be found from inverse perspective 
projection transformation (u,v) → (x,y,z). There is an infinite 
number of solutions, so for simplicity we assume that marker 
is located in xy0 plane. Considering F: (u,v) → (x,y,0), we then 
project p0 = F(0, 0), p1 = F(0, 1). p0 is the viewport center and 
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represents the ‘lookAt’ vector, while up = p1 - p0 determines 
the ‘up’ vector. 

The back-end is implemented using Java and Spring Boot. Its 
architecture is shown in the Fig. 7. It communicates with the 
front-end via secure web sockets only. For each web session, 
a separate engine object is created (a wrapper to C++ 
algorithms), thus the server can process multiple sessions 
correctly. The engine performs all steps of frame processing, 
including detection, tracking and calculation of camera pose. 
At the end, it sends information to the front-end. 

 

Fig. 7. Server structure. 

 
Fig. 8. The architecture of the pure front-end solution. 

C. Frontend-only Architecture 

To avoid the main problem of the previous architecture, 
the lag introduced by the network latency, we made a front-
end only solution (Fig. 8). 

In this way, there is no lag (i.e. transferring an encoded 
frame to the server and an array of numbers back). On the 
other hand, all files (including bulky 3D models) have to be 
downloaded before the web application starts. The required 
time depends mostly on the user’s connection speed and can 
be quite long. 

This application consists of separate JS modules and 
WebAssembly files [27]. Here the backend server is 
absolutely replaced by the wasm file, which was compiled 
from C++ project with the main algorithm pipeline [28]. 

WebAssembly is an open standard that defines a portable 
binary-code to run natively in browsers. In order to compile 
C++ project, we used Emscripten SDK [29]. It is a suitable 
instrument to call C++ functions from JavaScript side, and 
often the speed of procedures is higher than of pure JavaScript.  

Fortunately, our architecture has not changed much and it 
keeps the primary logic of the previous architecture 
unchanged. The only difference is that a user now downloads 
all files and does all the calculations in the browser. 

D. Architecture Summary 

A brief summary with the strong and weak sides of each 
solution are presented in the Table 1. On its basis, one can 
select any of the solutions for the particular case that is most 
suitable for the specified conditions. 

The frontend-backend solution is the best when we need 
complicated processing (potentially including some neural 
networks) or when we want to cover as much devices as 
possible, regardless of their hardware computational 
performance. However, it requires a stable connection during 
an AR session for unceasing data stream. Moreover, it can be 
very costly in two scenarios: either we want to run our 
application worldwide (then we need to deploy it over 
multiple servers over the globe to minimize the network 
latency between users and the nearest servers)or we want to 
serve a lot of users simultaneously(then we need to run a 
powerful backend server). 

TABLE I.  PROS AND CONS OF ARCHITECTURE TYPES 

 Pros Cons 

Frontend-

backend 

- Provides better 
performance  
- Allows to run heavy 
algorithms 
- Covers weak devices 

- Network latency 
- Requires a reliable 
connection 
- Costly in multiuser and 
worldwide usage 
scenarios 

Frontend-

only 

- No network lags 
- Runs independently from 
the network  
- Easier implementation 

- Requires a powerful 
hardware  
- Downloads heavy 
models 

 
The frontend-only solution is easier to implement and has 

a rather weak dependency on the network connection. Once 
the user gets all the necessary data from the server, the 
network can be turned off and the web page with AR 
application will still operate offline in the browser. To enjoy 
AR experience, the user has to run it on a powerful modern 
device with a few gigabytes of RAM (it depends on the weight 
of the models) and mid to high level system-on-chip (SoC). 

IV. EXPERIMENTAL RESULTS 

This section contains some relevant information about 
benchmarking of utilized computer vision solutions as well 
as performance tests of the AR system. 

A. Benchmarks for Marker Detectors 

To compare different detectors and find their optimal 
parameters, we have conducted a number of experiments 
changing detector parameters. We tuned the input image size, 
number of pyramid levels (octaves) and looked at the 
dependence on the number of features. As our target is mobile 
devices, we need to be sure that their computational power is 
sufficient to use our application in real time and balance 
between the detection quality and the algorithm speed.  
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Considering the results, presented in Fig.9 – Fig.11, we 
have chosen ORB detector with 1000 keypoints and 8 scale 
levels for 730x410 resolution. 

We tested the performance on preliminary recorded videos 
with markers in various positions. The quality metrics was 
defined as the ratio of frames with detected markers to the total 
number of frames in the video sample. The successful 
detection is registered if the average distance of 20 best 
matches is below a certain threshold (32.0 in our model). 

B. Performance Tests for Frontend-Backend Architecture 

We have tested the influence of the backend server’s 
computational power on the execution time. The results for 
two types of AWS instances are shown in Table 2. FPS is the 
time it takes a frame to complete the entire pipeline with 
rendering. When a marker is present in the scene, FPS is 
determined mostly by tracking. If there is no marker, tracking 
is impossible, and only detection affects speed. 

Although FPS is quite high, there is a significant lag 
between the camera and the render threads. The main problem 
here is not C++ algorithms, but quality and stability of the 
internet connection between the browser and the back-end 

server. The lag mainly stems from the network latency, which 
varies for different conditions. A delay of a few frames (0.1-
0.2s) was very common in our case. In addition, some frames 
may be lost on the server. 

 

Fig. 9. FPS dependence on the image resolution and a detector type. 

 

  

Fig. 10. Accuracy provided by ORB and AKAZE dependion on input image resolution and a number of levels. 

TABLE II.  TIMING ON DIFFERENT AWS INSTANCES 

Functions T2 small T2 large 

Detection (marker) 120 ms 77 ms 

Detection (no marker) 100 ms 46 ms 

Tracking 5 ms 4 ms 

Decode JPEG 1.2 ms 1.0 ms 

Camera pose estimation 0.3 ms 0.2 ms 

FPS (marker) ~20 ~20 

FPS (no marker) 6-7 >10 

 

Unfortunately, network latency can be reduced only by 
decreasing the distance between the geographical positions of 
user and server. 

C. Performance Tests for Serverless Architecture 

In the serverless solution, the performance is determined 
by the device (e.g. cell phone) capabilities and does not 
depend on any server where the web page is located. 

For testing, we used a laptop with Intel Core i5-8250U 
CPU at 1.60GHz. The results are demonstrated in Table 3. It 
is about as powerful as modern high-end mobile devices.  The 

performance of the majority of devices is expected to be 
worse. 

 

TABLE III.  TIMING ON THE USER’S LAPTOP 

Functions Time 

Detection (1 marker) 150-250 ms 

Tracking 15-25 ms 

Rendering 10-30 ms 

Memory management 1-2 ms 

FPS (marker) ~16 

FPS (no marker) 3-5 

  
As the resulting timing depends on the current load of the 

user’s CPU, we give the time ranges. WebAssembly reduces 
the speed of detection and tracking compared to the original 
C++ code.  

V. CONCLUSIONS 

We described the important elements required to build a web-
based AR application. The applied computer vision solutions 
were analyzed and discussed. Two different architectures for 
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the AR system were proposed. The developed AR pipeline is 
flexible and extendable. We are planning to integrate a new 
group of computer vision and machine learning algorithms for 
face tracking, text recognition, arbitrary 2D/3D object 
recognition in the near future. In addition, additional work will 
be done for the algorithm optimization, which is crucial for 
the application running in a mobile browser.  

 

 

Fig. 11. Accuracy of detectors depending on the Image Resolution. For each 
resolution was chosen the best properties provided the large number of 
detected frames. 
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