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Abstract—In the paper, we analyze the problem of automatic 

room floor segmentation. For this purpose, we consider several 

classic computer vision algorithms as well as some of the deep 

convolutional neural network architectures. The segmentation 

results are illustrated and compared. An idea for combining two 

groups of methods is proposed. It is demonstrated that a proper 

fusion provides the best segmentation quality.  
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I. INTRODUCTION 

Image segmentation is one of the key topics in computer 
vision. Usually, it is interpreted as semantic segmentation, i.e.   
linking of each pixel in an image with a label from a particular 
set of classes, for example, “human”, “grass”, “road”, “floor”, 
“table”, etc. Segmentation appears in a wide range of 
applications such as scientific image analysis, robotic vision, 
scene understanding, augmented reality and many more [1, 2].  

In the case of segmentation of surfaces with a similar 
texture or patterns, we can label subsets of pixels that share 
similar characteristics: intensities, colors, and locations. 
However, correct separation of different classes may be a 
challenge due to varying illumination, noise, occlusions, 
shades, light spots, reflections, and camera perspective 
changes. 

There are many existing methods for image segmentation: 
from classic ones like simple thresholding [3] or 
superpixels [4, 5] to quite advanced deep learning-based 
solutions [6]. In addition, various machine learning methods 
are often used along with hand-crafted features [7-9]. 

In this paper, we analyze the problem of automatic room 
floor segmentation. Such a solution can be used for different 
purposes like mixed reality (MR) applications, interior design, 
and entertainment. Our goal is to analyze both classic 
computer vision methods as well as common deep learning 
(DL) based convolutional neural network (CNN) 
architectures. As well we propose a methodology for 
combination of classic and deep learning based methods in 
order to get the best overall result.  

In Section II, we briefly describe the methods used in our 
experiments and show some of the intermediate image 
processing steps. A proposed fusion scheme of classic and 
DL-based branches outputs is shown in Section III. Finally, 
datasets and experiment results are described in Section IV. 

II. METHODS OVERVIEW 

A. Classical Pipeline 

Among many different methods for indoor images 
segmentation [10-12], superpixels are the most widely used 
technique [4, 5].  

According to the definition, a superpixel is a group of a 
few pixels with common properties Error! Reference source 
not found.. Representing an image as a group of superpixels 
allows one to get a compact representation and to retrieve the 
image regions sharing the same properties.  

There are different variations of superpixel algorithms [4, 
13]. One of the most widely used approach, the simple linear 
iterative clustering (SLIC), adapts a k-means clustering. The 
method works by clustering pixels based on their color 
similarity and proximity in the image plane [4]. The distance 
between two pixels in the combined five-dimensional LabXY 
[4] space is defined as follows: 
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where S is a grid interval, m is the compactness parameter.   

An example of superpixels clustering is given in Fig. 1b. 
Normally, two important parameters are tuned: the number of 
superpixels (was set to 300) and the compactness measure 
(was set to 7). The former corresponds to the maximum 
amount of superpixels to be extracted from the image, while 
the latter corresponds to the trade-off between proximity and 
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color-similarity. Compactness controls the shape and 
smoothness of the superpixels’ boundaries: with higher 
compactness they become smoother and the superpixels 
become more regular.  

The problem is that the straightforward application of 
superpixels does not provide a perfectly segmented floor. In 
order to overcome this difficulty, we have created an 
additional pipeline for image processing. First of all, we group 
pixels of a color image (Fig. 1a) into superpixels (Fig. 1b). In 
parallel, we transform RGB image into HSV color space and 
work with the saturation channel only (Fig. 1d), because it 
highlights changes between the room surfaces the most. Then, 
we obtain an edge map of the S-channel image (Fig. 1e). From 
the combination of the superpixels image and the edge map  

 

Fig. 1. The main steps of the classical pipeline. a) The input color image; 
b) the SLIC superpixels; c) the output clusterized image from the merged 
RAG; d) the saturation color channel; e) the image with highlighted edges; 
f) the RAG constructed from the superpixels and the edge map. 

we construct a region of adjacency graph (RAG), which has 
greater edge weights on the borders (Fig. 1f). Finally, we 
cluster the superpixels into groups using graph hierarchical 
merging algorithm (Fig. 1c). Some details of this pipelines are 
given below. 

RAG is an undirected weighted graph. Its vertices 
represent image areas (for example, superpixels), while its 
edges correspond to the connections between the adjacent 
regions [15]. RAGs give a spatial view of the images and are 
powerful tools for image processing if neighborhood 
relationships can be taken into account. In our case, images 
with emphasized edges (edge maps) are used to present this 
information. The Sobel gradient magnitude filter [16, 17] and 
the local binary pattern (LBP) feature map extraction [18] 
provides the most emphasized edges, so we used these two 
algorithms to construct the edge maps. 

We obtain the output image regions (Fig. 1c) by 
performing agglomerative hierarchical clustering with mean 
linkage until a threshold [19, 20].  As the appropriate threshold 
value highly depends on the image, we estimated it from the 
distribution of the graph edge weights. The threshold is a value 
which corresponds to a specific percentile (for example 80% 
as shown in Fig. 2). In this case, RAGs are associated with 
their unique threshold while merging.  

The graphs before and after the hierarchical merging are 
visualized in Fig. 3. The boundaries of image regions are also 
shown. These regions are the return segments, and one of them 
would be estimated as a floor. To decide which segment is the 
desired floor, we just take the biggest segment at the bottom 
of the image.  

  

Fig. 2. The distribution of the RAG edge weights. Vertical line shows the 
percentile value to estimate threshold for hierarchical merging.  

Fig. 3. The RAG before (left) and after (right) hierarchical merging. All 
nodes with the edge weight less than a threshold are merged together. Border 
of segments are shown in black.  

Since the classical approach is very sensitive to parameter 
tuning, we have run the classical pipeline several times with 
different model parameters, resulting in many segmentation 
masks. The adjusted settings included RGB and HSV images 
as the SLIC inputs; Sobel filtering and LBP rotation invariant 
edge extraction as methods for the edge detection; 75%, 80% 
and 85% percentile values for the threshold estimation. 

We add all binary masks together and if more than half of 
them are positive about a pixel, we label this pixel as true. 
Otherwise, we label it as false. As a result, we have a single 
binary segmentation mask.  

B. Deep Learning Pipeine 

There are many different DL architectures available for 
floor segmentation [6, 21-23]. We used two CNNs: light-
weight RefineNet [24] (see Fig. 4a) and FastFCN [25] with a 
joint pyramid upsampling (JPU) (see Fig. 4b). We used both 
CNN architectures with minimum changes, only the output 
layers were transformed to predict just 2 classes: floor and not 
a floor. 
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C. Post-processing: Texture Feature Analysis and Edge 

Refinement 

Masks predicted either by classical algorithms or by CNN 
may have Masks predicted either by classical algorithms or by 
CNN may have complicated boundaries, while the floor shape 
is usually more or less straight. Moreover, when adding many  

Fig. 4. The CNNs architectures used in the paper. a) The RefineNet 
architecture for semantic segmentation [23]. b) The FastFCN with a Joint 
Pyramid Upsampling (JPU) module and a multi-scale/global context module 
[24].  

Fig. 5. Post-processing based on the texture feature analysis. a) the input 
image; b) the classical pipeline output; c) the mask from the deep learning 
pipeline; d) the mask after post-processing. 

masks, instead of binary segmentation with two labels, we get 
determined areas (either a floor or not a floor) where pixels 
have the same label on each mask, and some undetermined 
regions where masks have opposite labels. Texture features 
may be really helpful for analyzing of indoor surfaces and for 
final classification of undetermined segments to a floor or not 
a floor.  

The whole image or its separate segments can be 
represented by features such as shape differences, texture 
differences, color or light fluctuations. The feature extraction 
algorithm provides fewer but more meaningful parameters to 
describe an image or  its parts.  

A wide range of algorithms for texture features extraction 
including statistical-based, transform-based, graph-based 
approaches and many other methods and their heirs are 
described in the literature [26]. In this study, we use a gray 
level co-occurrence matrix (GLCM) [27] which determines 
how often different pairs of pixels appear in an image. The 
GLCM expresses a matrix with a shape of image bitrates. 
From this matrix, one can extract features like ‘contrast’, 
‘dissimilarity’, ‘homogeneity’, ‘ASM’, ‘energy’ and 
‘correlation’ [27].  

Extracting GLCM features from different segments of the 
image makes it possible to calculate the Euclidean distance in 
multidimensional feature space from the undefined segment 
to the determined floor (or not a floor) segment (2). The 
dimensionality n  of feature vectors corresponding to the 
number of features are taken into account.  
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The post-processing part combines many segmentation 
masks obtained by different methods. The main purpose of 
this stage is the final classification of uncertain areas or blobs. 
Feature analysis resolves these uncertainties and makes more 
accurate prediction (see Fig.5).    

Finding blobs is done by analyzing contours of the masks. 
All uncertain blobs are linked to one of two (a floor or not a 
floor) determined areas by calculating the minimum distance 
in the feature space (2).   

Fig. 6. Full pipeline overview. Masks from ‘classical’ and DL branches are 
combined together and post-processed. 

D. Fusion Scheme 

Both classical and DL solutions failed in some cases. In 
order to additionally refine the quality of segmentation maps, 
we decided to build a fusion scheme shown in Fig 6.  

An RGB image is processed separately by the classical and 
the DL branches. The classical branch includes SLIC 
superpixeling, obtaining edge maps, RAG constructing and 
RAG hierarchical merging. These basic steps repeat with 
various parameters that provide many segmentation masks, 
that are summed together. The binary mask obtained by 
thresholding of the sum is the output mask from the classical 
branch.  

The DL branch consists of two neural networks and 
independently predicts segmentation masks for the input 
image. They are also added together. Finally, two outputs 
from the both branches are combined and the post-processing 

a)

b) 
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using texture feature analysis is implemented. A slight edge 
refinement is applied in the very end. 

III. EXPERIMENTS AND RESULTS 

A. Datasets 

We worked with several datasets. In order to train CNNs, 
we used 1449 images from NYUDv2 [28]; 10329 images from 
the SUN-RGB-D [29-31] and 8880 images from the SUN-
RGB-D with NYUD removed. The target dataset was a set of 
21 hand-labeled images acquired for evaluation purposes. 

B. Results 

To evaluate the results of segmentation we used 
Intersection over Union (IoU) [32]. The best result was 
achieved with merging of 3 masks (two from the neural 
networks and one summed mask from the classical pipeline) 
and applying the post-processing based on texture feature 
analysis in the end. All intermediate IoU values are shown in 
the table below.  

TABLE I.  THE RESULT EVALUATION 

Mask obtained with: IoU 

Classical branch 

Refinenet 

FastFCN 

Deep learning branch 

Classical + deep learning branches  

Full pipeline 

0.5442 

0.7837 

0.7893 

0.7939 

0.7977 

0.8013 

Fig. 7. Examples of segmentation masks obtained with classical pipeline, 
deep learning pipeline and as a result of their combination and post-
processing. a) Both classical and deep learning pipelines work well. b) 
Classical pipeline  outperforms the deep learning approach. c) Deep learning 
pipeline works better than the classical one. d) Both classical and deep 
learning pipelines work fine and post-processing makes an improvement. e) 

Both classical and deep learning pipelines work bad, post-processing is used. 
Color legend in the figure: dark blue is true positive, magentra is false 
positive, cian is false negative. 

Fig. 7 contains some examples of floor segmentation 
obtained with different setups. As expected, deep learning 
solution handles more challenging cases better than classical 
computer vision pipeline. However, for some images 
developed image analysis procedure provides quite 
competitive results or even outperforms CNN-based solution. 
This is explained by the size and quality of the training data, 
which is crucial for DL-based methods applied for typical 
computer vision tasks. Finally, the proposed post-processing 
step based on feature crafting allows refining the quality of 
segmentation maps. 

IV. CONCLUSIONS  

In this work, we analyzed the problem of room floor 
segmentation. We have applied both classical computer 

vision and deep learning techniques for this task. Firstly, we 

constructed a custom classical pipeline based on superpixels, 

region adjacency graphs, and graph hierarchical merging. 

Secondly, we picked two typical CNN architectures and 
compared their output predictions. Finally, we have built a 

fusion scheme to combine outputs from two branches and 

applied post-processing based on textural features analysis. It 

is clearly seen from the conducted experiments that the 

proper combination of computer vision methods always gives 

the best outcomes. In the future, we are planning to 
additionally improve the segmentation quality and to 

integrate the developed pipeline into a mobile application. 
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