

Light-Weight Tracker for Sports Applications

Vitalii Vovk, Sergiy Skuratovskyi, Pavlo Vyplavin, and Ievgen Gorovyi

It-Jim

1 Konstitucii Sqr., Kharkiv 61045, Ukraine

vitalii.vovk@it-jim.com, ssnake@it-jim.com, pavlo.vyplavin@it-jim.com, ceo@it-jim.com

Abstract— In the paper, we describe technical details of

multi-player sports tracker system. We demonstrate that proper

in-depth analysis of video frames sequence may provide a lot of

useful information required for sports analytics. Object

detection and tracking steps are analyzed. Novel ideas for

efficient filtering of false detections and irrelevant tracks are

proposed. Also, we show an example of how the object tracking

information used for the regions of interest location allows

streaming sports events without human operators. At last,

important practical implementation details, as well as initial

experimental results, are discussed.

Keywords—computer vision, sports tracking, OpenCV,

camera controller

I. INTRODUCTION

Artificial intelligence (AI) is a rapidly growing discipline,
providing plenty of possibilities for process automation,
human-computer interaction, smart systems, internet-of-
things (IoT), etc. Since most of the information goes through
the human visual system (HVS), visual scene understanding
has a very high impact on the efficiency of AI systems and
applications. Computer vision (CV) [1] discipline provides an
extensive list of methodologies for an automatic interpretation
of visual information (images, videos) and useful information
extraction [2].

CV in sports has a particular interest [3], and various
practical applications are considered. In [4], a system for
detection of soccer goal shots is described. Example of an
algorithm for goal event detection itself is described in [5].
Ball detection and tracking is also a quite popular research
direction [3], [6]. Nowadays, one of the most actively studied
applications is related to human tracking algorithms [3], [7]-
[8].

In the paper, we consider important technical details of a
custom multi-player sports tracker system. The block-scheme
of an image-processing part of our system is shown in Fig. 1.
It consists of four main and three additional optional blocks:

1) A detector is responsible for primary object detection on
a raw input image;

2) Object filter filters-out non-players and non-referee
objects;

3) Object tracker assigns detected objects to existing tracks
or makes new tracks for unassigned objects;

4) Track filter drops tracks, which are unlikely to be true and
important, based on the object‘s velocity and position;

5) ROI estimator finds the most relevant part of the current
frame;

6) Camera controller emulates camera movement by
estimation of the current camera position and zoom, given
previous camera state and current ROI;

7) Finally, the transformer prepares an output frame by
cutting the estimated camera rectangle from the input
frame and, optionally, applying any additional
transformations.

Figure 1.Image processing pipeline of custom sports tracker.

Object filter and track filter can be considered as parts of
the detector and object tracker, respectively.

In this paper, we describe only the main procedures of our
sport-tracker system: object detection, object tracking, ROI
estimation, and camera controller emulation.

The rest of the paper has the following structure. Section
II describes the principles of object detection and filtering.
Developed object tracking pipeline is discussed in Section III.
In particular, we define an adaptive re-weighing principle,
state update, and player trajectory extrapolation procedure. In
section IV, we describe the main principles of stable ROI
estimation and smooth camera movement emulation.
Section V contains information about some of the practical
improvements of the tracker and its real application. Finally,
we make conclusions about the described system.

II. FAST OBJECT DETECTION

Detection is one of the most important parts of the
pipeline. Our detection stage consists of the following steps:

1) background estimation;

2) moving object detection;

3) object filtration.

A. Background estimation

In our system, objects are parts of the image that differ
from the background. From this definition, it is clear that
objects can be found from the difference between the current
frame and background (Fig. 2,a-b). Since detection conditions
can vary over time, we need to estimate the background
dynamically. The following ways of background estimation
are possible:

978-1-7281-1714-0/19/$31.00 ©2019 IEEE 255

1) Correct one: set background buffer size N and step k.

For each ith frame Fi, where i=j·k, j = 0,1…, we update

background as:

௝ܤ = ൫ܤ௝ିଵ ⋅ ݆ + ௜൯ܨ (݆ + 1)⁄ if j < N,

௝ܤ = ൫ܤ௝ିଵ ⋅ ܰ − ௜ି௞ேܨ + ௜൯ܨ ܰ⁄ if j ≥ N.
(1)

In other words, we estimate the mean frame in a floating
window of size N. This requires holding a buffer of depth N
for input frames, which can be an undesirable effect because
of the additional memory consumption.

2) Fast one: set background “buffer size” N and step k.

For each ith frame Fi, where i=j·k, j = 0,1…, we update

background as:

௝ܤ = ൫ܤ௝ିଵ ⋅ ݆ + ௜൯ܨ (݆ + 1)⁄ if j < N,

௝ܤ = ൫ܤ௝ିଵ ⋅ (ܰ − 1) + ௜൯ܨ ܰ⁄ if j ≥ N.
(2)

Equation (2) describes background as an autoregressive

model of first-order xj = αxj-1 + ej with α = (N-1)/N and

ej = Fi/N.
If color representation is discrete (any integer types) and

thus has a limited number of levels, we need to estimate buffer
size N carefully. It can be shown that to update background
value x to x+1 we need the value of the current frame to be at
least

ݕ ≥ ݔ + 0.5ܰ. (3)

To update background value x to x-1 need the value of the
current frame to be at most:

ݕ < ݔ − 0.5ܰ (4)

For example, for 8-bit images (256 possible color levels)

this means that it is impossible to increase background if it

has value x > (255-0.5N), and decrease for x ≤ (0.5N). So

setting N to some big number can lead to the non-updatable

background, and setting N to some small number leads to the

stronger influence of the current frame, and thus reduces

filtration properties (background stability).

B. Moving object detection

We detect only objects that move over time and thus can
be discriminated from the background. Objects are blobs,
which are detected on binarized images after subtracting the
background from the current frame (Fig. 2,c):

ܦ = ൜1	݂݅	abs(ܨ − (ܤ ≥ ܨ)abs	݂݅	0,ݐ − (ܤ < (5) ,ݐ

where t is a threshold, which defines the sensitivity of the
detector, abs(·) is the operator that returns the absolute value
of its argument.

To reduce blobs fragmentation, the image is then filtered
with the Gaussian filter and then is binarized for the second
time with another threshold.

C. Objects filtering

The next step is to filter out the noise caused by artifacts
in image and non-player movement (movement outside play-
field). We use the size of the detected blobs to provide
filtering. The problem is in a wide range of possible blobs
sizes: players on backplane can have a small size, and near-
plane false objects can have a relatively large size (Fig. 2,d).

To normalize sizes of the objects, we use scale map (see Fig.
2,e) that has high scales for far objects and low scales for near
objects.

Using such a scale map also helps to remove outliers,
simply by setting small values for regions outside of playfield
(Fig. 2,f).

After filtering, we estimate bounding boxes around
detected objects and pass them to the next step, namely,
tracking.

III. OBJECT TRACKING

Object tracking is a two-step process. First, we need to
assign detected objects to existing tracks. Second, we need to
update the state of all tracks with the new information coming
from detections.

A. Assignment

At first, we need to assign newly detected objects to
existing tracks. To do this, we find the distance between the
object bounding box and bounding box of track extrapolated
to the current frame.

Let us define i-th object’s bounding box as bi
obj, j-th track’s

bounding box as bj
track. We define |·| as an operator, returning

area of a rectangle (bounding box), and ·∩· as an operator,
returning overlapping rectangle of two bounding boxes. Then

௜௝݌ = ቚ௕೚್ೕ೔ ∩௕೟ೝೌ೎ೖೕ ቚቚ௕೚್ೕ೔ ቚ ,
௜௝ݎ = ቚ௕೚್ೕ೔ ∩௕೟ೝೌ೎ೖೕ ቚቚ௕೟ೝೌ೎ೖೕ ቚ , (6)

and measure of similarity between i-th object and j-th track is
defined as:

 ௜݂௝ = ଶ൫௣೔ೕ⋅௥೔ೕ൯௣೔ೕା௥೔ೕ . (7)

Using (7), we can find the best match within detected
objects for any existing track and assign them.

For objects that are not assigned to any track but still have
a reasonable value of ௜݂௝ , we create new tracks as a copy of j-

th tracks, and assign them. This is called a track multiplication.

For the rest of the objects, we create new empty tracks.

B. State update

Track state contains the next main parameters:

• the track’s position (center of the bounding box);

• the track’s velocity;

• the track’s bounding box;

• detections count;

• consequent misdetections count.

For each new track, we set its state as follows. We set the
track’s position equal to the object’s position (center of the
bounding box), the track’s velocity to zero, and the track’s
bounding box equal to the object’s bounding box. We set the
number of detections equal to 1 and the number of consequent
misdetections equal to 0.

978-1-7281-1714-0/19/$31.00 ©2019 IEEE 256

a

b

c

d

e

f

g

Figure 2. Blobs detection steps: source image (a), estimated background
(grayscale) (b), diff frame after threshold applying (c), detected non-

filtered blobs (d), scale map (e), filtered objects (f) and built tracks (g)

For each assigned and multiplied track, we update the
state as follows. First, we update the track’s position and
velocity using the alpha-beta filter:

Prediction ܠ௞∗ = 	 ௞ିଵതതതതതതܠ + ݐ௞ି૚തതതതതതΔܞ

(8)
Residual ܚ = ∗௞ܠ −	 ௞ܠ

Update ܠ௞തതത = ∗௞ܠ + ߙ ⋅ ௞തതതܞ ܚ = ௞ି૚തതതതതതܞ + ݐΔ/ߚ ⋅ ܚ

where ܠ௠തതതത is the estimated track coordinate at the frame m; ܞ௠തതതത is the estimated track velocity at the frame m; Δݐ is the
time step between the previous and the current frame; ߙ and ߚ are the alpha-beta filter parameters. Varying ߙ and ߚ, we
can find an optimal balance between smooth tracking and
filter sensitivity. After that, we set bounding box size equal to
the size of the last detected bounding box, increment number
of detections and set the number of consequent misdetections
to 0.

For each unassigned track, we update the state as follows.
We update track position and velocity using the alpha-beta
filter: ܠ௞തതത = ௞ିଵതതതതതതܠ + ௞തതതܞ ,ݐ௞ି૚തതതതതതΔܞ = ௞ି૚തതതതതത, (9)ܞ

and increment number of misdetections.

C. Track filtering

To reduce the number of false tracks, we return only tracks
that satisfy the following conditions for each new frame:

− detections count exceeds the threshold;

− misdetections count is less than the threshold.

These steps allow to filter out short-time objects and
objects that disappeared.

Example of tracked objects is shown in Fig. 2,g.

IV. REGION OF INTEREST ESTIMATION AND CAMERA

EMULATION

Object tracks have many possible further usage scenarios,
for example, automatic camera controller (emulation of an
operator).

Having updated track model parameters, we can find a
region of interest (ROI), or bounding box surrounding most
“interesting” objects within given constraints: aspect ratio,
minimal/maximal size, frame size. To do this, we assign states
of the tracks to clusters and find a subset of clusters that holds
the maximum information and at the same time can be
enclosed in the constrained bounding box. If two disjoint
clusters cannot be enclosed in such a bounding box, the less
informative one (less “interesting”) is dropped from further
processing.

A. Clustering

To find clusters, we use Ward’s method, which relates to
the Lance–Williams family of agglomerative hierarchically
clustering algorithms [9] and minimizes the total within-
cluster variance.

Ward’s distance between two clusters is given by:

 ݀൫ܥ௜ , ௝൯ܥ = ௡೔௡ೕ௡೔ା௡ೕ ଶߩ ൬∑௪∈஼೔ ௪௡೔ , ∑௦∈஼ೕ ௦௡ೕ൰, (10)

where ݊௜ and ௝݊ are cardinalities of clusters ܥ௜ and ܥ௝

respectively, and ݔ)ߩ, is an Euclidean distance between x (ݕ
and y. Thus, Ward’s distance is a distance between clusters’
centers weighted on their cardinalities.

Lance–Williams algorithm then recursively updates
distances between clusters on every iteration t of cluster
merge:

978-1-7281-1714-0/19/$31.00 ©2019 IEEE 257

݀(௜௝)௞௧ ൫ܥ௜ ∪ ௝ܥ , ௞൯ܥ =

= ௡೔ା௡ೖே ݀௜௞௧ିଵ(ܥ௜, (௞ܥ + ௡ೕା௡ೖே ݀௜௝௧ି௜൫ܥ௝ , ௞൯ܥ −− ௡ೖே ݀௜௝௧ିଵ൫ܥ௜, ,௝൯ܥ

(11)

where ݊௜ , ௝݊ and ݊௞ are cardinalities of i-th, j-th and k-th

clusters respectively, ݊௜ + ௝݊ + ݊௞ = ܰ; i and j are selected

to minimize inter-cluster distance at iteration t-1: min௜,௝ ݀௜௜௧ିଵ ൫ܥ௜ , .௝൯ܥ

By sequentially merging closest clusters, we can build a
dendrogram, which represents hierarchical relations between
elements (see Fig. 3). Then, we form resulting clusters by
setting threshold as a scaled difference of max inter-clusters
distances:

 ܶ = ܿ ⋅ max௧ (݀௧ାଵ − ݀௧), (12)

where ݀௧ is a minimal pairwise distance between clusters at
iteration t.

Figure 3. Clustering example. Clusters (left) and hierarchical

dendrogram (right) [10]

The weight for each cluster is set as a sum of the weight of
cluster members.

B. Outliers removing

Unfortunately, it is often the case when not all clusters can
be enclosed by a constrained rectangular box (see Fig. 4). In
such cases, we need to leave as maximum information as
possible, but drop some clusters from being enclosed. The
following algorithm achieves this.

First, we sort all of the clusters by distance from the
weighted mean position: ݀௜ = ඥ(ݔ௜ − ௖)ଶݔ + ௜ݕ) − ,	௖)ଶݕ

௖ݔ (13) = ଵே ∑ ௜ே௜ୀଵݔ௜ݓ ௖ݕ ,	 = ଵே ∑ ௜ே௜ୀଵݕ௜ݓ ,

where ݓ௜ is a weight of the i-th cluster, ݔ௜ , ௜ are coordinatesݕ
of the i-th cluster, N is a total number of clusters.

Then we repeat the following steps: we select a cluster
with the minimal value of ݀௜ , remove it from the sorted
sequence and put it to the output cluster set U. We build a
minimal-size constrained rectangle around set U. If it is
possible, we compute values:

 ܽ = ௤೔௤೔షభ, (14)

 ܾ = ௦೔௦೔షభ,

where ݍ௜ is a weight of all clusters within the bounding
rectangle (region of interest, ROI) at step i, and ݏ௜ is a ROI
area at step i. Value a shows a relative increase of weight, and
b shows a relative increase of ROI area.

If ROI breaks the constraints, or
௔௕ < ݐ , where t is a

predefined threshold, which defines required minimal
“density” of clusters, we remove the last added cluster from
the set U.

The described approach is illustrated in Fig. 4.

a d

b e

c f

Figure 4. Outliers removing example: initial setup (a); sequential adding
closest clusters #1-#3 to the output set (b-d); constraint violation for the

cluster #4 (e); resulting ROI, enclosing clusters #1-#3 (f).

Legend: the red box is a current ROI; the pink rectangle is a cluster under
test; the violet rectangles are objects that will be in the final subset; the
green rectangles are detected and tracked objects; the blue circle is a

weighted mean of clusters centers; the green circles are clusters’ centers.

C. Smooth camera movement emulation

After the ROI is found, we can use it to emulate the
operator’s work, and update virtual camera position and
zooming.

 To provide a smooth camera movement, we use ROI
buffering and filtering.

The buffer stores last M estimated ROIs (we use M=30 in
our setup). Then, having a current camera rectangle on the i-th

frame ݎ௖௜ = ௖௜ݔ] , ௖௜ݕ , ௖௜ݓ , ℎ௖௜] , we estimate the weight of each

ROI ݎ௝ in a buffer as an intersection over union (IoU) between
the camera rectangle and ROI: ݍ௝ = ௥೎೔∩௥ೕ௥೎೔∪௥ೕ	, (15)

where ݎ௖௜ ∩ ௝ݎ is an intersection of camera rectangle and j-th

ROI, and ݎ௖௜ ∪ ௝ݎ is an intersection between them.

Then we use ROI with the largest ݍ௝ to update the current

camera rectangle using alpha-beta filtering independently on
each rectangle property. This allows changing both the camera
position and zoom smoothly. We also use thresholds on
minimal camera position and zoom changes to make camera
behavior more stable and realistic.

978-1-7281-1714-0/19/$31.00 ©2019 IEEE 258

V. PRACTICAL REALIZATION AND IMPROVEMENTS

In practice, computational performance of the proposed
multiple-object sports tracker, as well as memory
consumption, are very important. It is especially reasonable
for embedding devices with low memory and no possibility to
use high-parallel computations using GPU. To achieve
reasonable performance, we follow the following rules:

• minimize the number of operations on images.
We process images only at the first step
(detection) for background estimation and blobs
finding;

• if possible, downsize images before processing.
We achieve good tracking quality on images of
100 px height (with input frames having 4K
resolution);

• use simple and fast models. In our tracker we use
linear objects movement model because of the
relatively high frame rate compared to object
speed;

• avoid the use of image buffers to reduce memory
consumption. We do not use any image buffers
in our tracker. The only images that stored in
memory are low-resolution downsized current
frame, background, and reweighing coefficients;

• optimize algorithms where possible to reduce
memory usage and increase performance.

Following these rules allowed us to build extremely fast
sports tracker with camera controller implementation that can
be used in sport games translations. Our implementation can
easily process 4K video in real-time on a single core of the i7-
3630QM CPU.

Algorithms implemented in our sports tracker are general
and can be applied to different kinds of sports activities, such
as hockey, soccer, basketball, etc. with only minor changes in
thresholds (see Fig. 5).

a b

c d

e f

Figure 5. Examples of estimated camera rectangles for different sports
activities: hockey (a, b), basketball (c, d) and soccer (e, f)

CONCLUSION

We have described several important aspects required to
build a multi-object sports tracking system. Outputs of each
image processing stage were analyzed and discussed. It was
shown that proper blobs rescaling allows to filter out false
object detections and keep only useful data. For tracking part,
we have proposed smart control of the trajectory updates
giving a way to discard unnecessary tracks. Finally, proper
utilization of outputs from CV part and combining with virtual
camera controller provided a smooth real-time picture of
sports activities with no human operator engagement.

Proposed sports tracking system has low computational
and memory requirements and can be applied to various sports
activities.

REFERENCES

[1] D. Baggio, S. Emami, D. Escriva, “Mastering OpenCV with practical
Computer Vision Projects.” / Packt Publishing, 2012.

[2] M. Doinea, C. Boja, “Machine learning techniques for data extraction
and classification in computer vision software” / Proc. 13th Int. Conf.
informatics in economy, Bucharest, Romania, 2014

[3] Computer Vision in Sports (Advances in Computer Vision and Pattern
Recognition), Springer; 2014.

[4] Chen SC, Shyu ML, Zhang C, Luo L, Chen M, “Detection of soccer
goal shots using joint multimedia features and classification rules.” /
In: Proceedings of the fourth international workshop on multimedia
data mining (MDM/KDD2003), pp 36–44, (2003)

[5] D’Orazio T, Leo M, Spagnolo P, Nitti M, Mosca N, Distante A, “A
visual system for real time detection of goal events during Soccer
matches.” / Comput Vis Image Underst 113(5): 622–632, (2009)

[6] Yu X, Sim C, Wang JR, Cheong L, “A trajectory-based ball detection
and tracking algorithm in broadcast tennis video.” / ICIP 2:1049–1052,
(2004)

[7] Yi Wu, J. Lim, M.-H. Yang, “Online Object Tracking: A Benchmark”,
IEEE Conference on Computer Vision and Pattern Recognition, June
23-28, 2013.

[8] [8] Automatic multi-player detection and tracking in broadcast sports
video using support vector machine and particle filter, “IEEE
International Conference on Multimedia and Expo, July 2006”,
pp. 1629-1632.

[9] F. Murtagh and P. Legendre, “Ward’s Hierarchical Clustering Method:
Clustering Criterion and Agglomerative Algorithm” (2011).

[10] https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie

978-1-7281-1714-0/19/$31.00 ©2019 IEEE 259

