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Abstract— In the paper, we describe technical details of 

multi-player sports tracker system. We demonstrate that proper 

in-depth analysis of video frames sequence may provide a lot of 

useful information required for sports analytics. Object 

detection and tracking steps are analyzed. Novel ideas for 

efficient filtering of false detections and irrelevant tracks are 

proposed. Also, we show an example of how the object tracking 

information used for the regions of interest location allows 

streaming sports events without human operators. At last, 

important practical implementation details, as well as initial 

experimental results, are discussed. 

Keywords—computer vision, sports tracking, OpenCV, 

camera controller 

I. INTRODUCTION  

Artificial intelligence (AI) is a rapidly growing discipline, 
providing plenty of possibilities for process automation, 
human-computer interaction, smart systems, internet-of-
things (IoT), etc. Since most of the information goes through 
the human visual system (HVS), visual scene understanding 
has a very high impact on the efficiency of AI systems and 
applications. Computer vision (CV) [1] discipline provides an 
extensive list of methodologies for an automatic interpretation 
of visual information (images, videos) and useful information 
extraction [2].  

CV in sports has a particular interest [3], and various 
practical applications are considered. In [4], a system for 
detection of soccer goal shots is described. Example of an 
algorithm for goal event detection itself is described in [5]. 
Ball detection and tracking is also a quite popular research 
direction [3], [6]. Nowadays, one of the most actively studied 
applications is related to human tracking algorithms [3], [7]-
[8]. 

In the paper, we consider important technical details of a 
custom multi-player sports tracker system. The block-scheme 
of an image-processing part of our system is shown in Fig. 1.  
It consists of four main and three additional optional blocks: 

1) A detector is responsible  for primary object detection on 
a raw input image; 

2) Object filter filters-out non-players and non-referee 
objects; 

3) Object tracker assigns detected objects to existing tracks 
or makes new tracks for unassigned objects; 

4) Track filter drops tracks, which are unlikely to be true and 
important, based on the object‘s velocity and position; 

5) ROI estimator finds the most relevant part of the current 
frame; 

6) Camera controller emulates camera movement by 
estimation of the current camera position and zoom, given 
previous camera state and current ROI; 

7) Finally, the transformer prepares an output frame by 
cutting the estimated camera rectangle from the input 
frame and, optionally, applying any additional 
transformations. 

 

Figure 1.Image processing pipeline of custom sports tracker.

Object filter and track filter can be considered as parts of 
the detector and object tracker, respectively. 

In this paper, we describe only the main procedures of our 
sport-tracker system: object detection, object tracking, ROI 
estimation, and camera controller emulation. 

The rest of the paper has the following structure. Section 
II describes the principles of object detection and filtering. 
Developed object tracking pipeline is discussed in Section III. 
In particular, we define an adaptive re-weighing principle, 
state update, and player trajectory extrapolation procedure. In 
section IV, we describe the main principles of stable ROI 
estimation and smooth camera movement emulation. 
Section V contains information about some of the practical 
improvements of the tracker and its real application. Finally, 
we make conclusions about the described system. 

II. FAST OBJECT DETECTION 

Detection is one of the most important parts of the 
pipeline. Our detection stage consists of the following steps: 

1) background estimation; 

2) moving object detection; 

3) object filtration. 

A. Background estimation 

In our system, objects are parts of the image that differ 
from the background. From this definition, it is clear that 
objects can be found from the difference between the current 
frame and background (Fig. 2,a-b). Since detection conditions 
can vary over time, we need to estimate the background 
dynamically. The following ways of background estimation 
are possible: 
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1) Correct one:  set background buffer size N and step k.  

For each ith frame Fi, where i=j·k, j = 0,1…, we update 

background as:  

௝ܤ  = ൫ܤ௝ିଵ ⋅ ݆ + ௜൯ܨ (݆ + 1)⁄             if j < N, 

௝ܤ  = ൫ܤ௝ିଵ ⋅ ܰ − ௜ି௞ேܨ + ௜൯ܨ ܰ⁄      if j ≥ N. 
(1) 

In other words, we estimate the mean frame in a floating 
window of size N. This requires holding a buffer of depth N 
for input frames, which can be an undesirable effect because 
of the additional memory consumption. 

2) Fast one:  set background “buffer size” N and step k.  

For each ith frame Fi, where i=j·k, j = 0,1…, we update 

background as:  

௝ܤ  = ൫ܤ௝ିଵ ⋅ ݆ + ௜൯ܨ (݆ + 1)⁄           if j < N, 

௝ܤ  = ൫ܤ௝ିଵ ⋅ (ܰ − 1) + ௜൯ܨ ܰ⁄      if j ≥ N. 
(2) 

Equation (2) describes background as an autoregressive 

model of first-order xj = αxj-1 + ej with α = (N-1)/N and 

ej = Fi/N.  
If color representation is discrete (any integer types) and 

thus has a limited number of levels, we need to estimate buffer 
size N carefully. It can be shown that to update background 
value x to x+1 we need the value of the current frame to be at 
least 

ݕ  ≥ ݔ + 0.5ܰ. (3) 

To update background value x to x-1 need the value of the 
current frame to be at most: 

ݕ  < ݔ − 0.5ܰ (4) 

For example, for 8-bit images (256 possible color levels) 

this means that it is impossible to increase background if it 

has value x > (255-0.5N), and decrease for x ≤ (0.5N). So 

setting N to some big number can lead to the non-updatable 

background, and setting N to some small number leads to the 

stronger influence of the current frame, and thus reduces 

filtration properties (background stability). 

B. Moving object detection 

We detect only objects that move over time and thus can 
be discriminated from the background. Objects are blobs, 
which are detected on binarized images after subtracting the 
background from the current frame (Fig. 2,c): 

ܦ  = ൜1	݂݅	abs(ܨ − (ܤ ≥ ܨ)abs	݂݅	0,ݐ − (ܤ <  (5) ,ݐ

where t is a threshold, which defines the sensitivity of the 
detector, abs(·) is the operator that returns the absolute value 
of its argument. 

To reduce blobs fragmentation, the image is then filtered 
with the Gaussian filter and then is binarized for the second 
time with another threshold. 

C. Objects filtering 

The next step is to filter out the noise caused by artifacts 
in image and non-player movement (movement outside play-
field). We use the size of the detected blobs to provide 
filtering. The problem is in a wide range of possible blobs 
sizes: players on backplane can have a small size, and near-
plane false objects can have a relatively large size (Fig. 2,d). 

To normalize  sizes of the objects, we use scale map (see Fig. 
2,e) that has high scales for far objects and low scales for near 
objects. 

Using such a scale map also helps to remove outliers, 
simply by setting small values for regions outside of playfield 
(Fig. 2,f). 

After filtering, we estimate bounding boxes around 
detected objects and pass them to the next step, namely, 
tracking. 

III. OBJECT TRACKING 

Object tracking is a two-step process. First, we need to 
assign detected objects to existing tracks. Second, we need to 
update the state of all tracks with the new information coming 
from detections. 

A. Assignment 

At first, we need to assign newly detected objects to 
existing tracks. To do this, we find the distance between the 
object bounding box and bounding box of track extrapolated 
to the current frame. 

Let us define i-th object’s bounding box as bi
obj, j-th track’s 

bounding box as bj
track. We define |·| as an operator, returning 

area of a rectangle (bounding box), and ·∩· as an operator, 
returning overlapping rectangle of two bounding boxes. Then 

௜௝݌  = ቚ௕೚್ೕ೔ ∩௕೟ೝೌ೎ೖೕ ቚቚ௕೚್ೕ೔ ቚ , 
௜௝ݎ  = ቚ௕೚್ೕ೔ ∩௕೟ೝೌ೎ೖೕ ቚቚ௕೟ೝೌ೎ೖೕ ቚ , (6) 

and measure of similarity between i-th object and j-th track is 
defined as: 

 ௜݂௝ = ଶ൫௣೔ೕ⋅௥೔ೕ൯௣೔ೕା௥೔ೕ . (7) 

Using (7), we can find the best match within detected 
objects for any existing track and assign them. 

For objects that are not assigned to any track but still have 
a reasonable value of ௜݂௝ , we create new tracks as a copy of j-

th tracks, and assign them. This is called a track multiplication. 

For the rest of the objects, we create new empty tracks. 

B. State update 

Track state contains the next main parameters: 

• the track’s position (center of the bounding box); 

• the track’s velocity; 

• the track’s bounding box; 

• detections count; 

• consequent misdetections count. 

For each new track, we set its state as follows. We set the 
track’s position equal to the object’s position (center of the 
bounding box), the track’s velocity to zero, and the track’s 
bounding box equal to the object’s bounding box. We set the 
number of detections equal to 1 and the number of consequent 
misdetections equal to 0. 
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Figure 2. Blobs detection steps: source image (a), estimated background 
(grayscale) (b), diff frame after threshold applying (c), detected non-

filtered blobs (d), scale map (e), filtered objects (f) and  built tracks (g) 

For each assigned and multiplied track, we update the 
state as follows. First, we update the track’s position and 
velocity using the alpha-beta filter: 

Prediction ܠ௞∗ = 	 ௞ିଵതതതതതതܠ +  ݐ௞ି૚തതതതതതΔܞ

(8) 
Residual ܚ = ∗௞ܠ −	  ௞ܠ

Update ܠ௞തതത = ∗௞ܠ + ߙ ⋅ ௞തതതܞ ܚ = ௞ି૚തതതതതതܞ + ݐΔ/ߚ ⋅  ܚ

where ܠ௠തതതത is the estimated track coordinate at the frame m;  ܞ௠തതതത is the estimated track velocity at the frame m; Δݐ is the 
time step between the previous and the current frame; ߙ and ߚ are the alpha-beta filter parameters. Varying ߙ and ߚ, we 
can find an optimal balance between smooth tracking and 
filter sensitivity. After that, we set bounding box size equal to 
the size of the last detected bounding box, increment number 
of detections and set the number of consequent misdetections 
to 0. 

For each unassigned track, we update the state as follows. 
We update track position and velocity using the alpha-beta 
filter: ܠ௞തതത = ௞ିଵതതതതതതܠ + ௞തതതܞ ,ݐ௞ି૚തതതതതതΔܞ =  ௞ି૚തതതതതത, (9)ܞ

and increment number of misdetections. 

C. Track filtering 

To reduce the number of false tracks, we return only tracks 
that satisfy the following conditions for each new frame: 

− detections count exceeds the threshold; 

− misdetections count is less than the threshold. 

These steps allow to filter out short-time objects and 
objects that disappeared. 

Example of tracked objects is shown in Fig. 2,g. 

IV. REGION OF INTEREST ESTIMATION AND CAMERA 

EMULATION 

Object tracks have many possible further usage scenarios, 
for example, automatic camera controller (emulation of an 
operator). 

Having updated track model parameters, we can find a 
region of interest (ROI), or bounding box surrounding most 
“interesting” objects within given constraints: aspect ratio, 
minimal/maximal size, frame size. To do this, we assign states 
of the tracks to clusters and find a subset of clusters that holds 
the maximum information and at the same time can be 
enclosed in the constrained bounding box. If two disjoint 
clusters cannot be enclosed in such a bounding box, the less 
informative one (less “interesting”) is dropped from further 
processing. 

A. Clustering 

To find clusters, we use Ward’s method, which relates to 
the Lance–Williams family of agglomerative hierarchically 
clustering algorithms [9] and minimizes the total within-
cluster variance. 

Ward’s distance between two clusters is given by: 

 ݀൫ܥ௜ , ௝൯ܥ = ௡೔௡ೕ௡೔ା௡ೕ ଶߩ ൬∑௪∈஼೔ ௪௡೔ , ∑௦∈஼ೕ ௦௡ೕ൰, (10) 

where ݊௜  and ௝݊  are cardinalities of clusters ܥ௜  and ܥ௝ 

respectively, and ݔ)ߩ,  is an Euclidean distance between x (ݕ
and y. Thus, Ward’s distance is a distance between clusters’ 
centers weighted on their cardinalities. 

Lance–Williams algorithm then recursively updates 
distances between clusters on every iteration t of cluster 
merge: 
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݀(௜௝)௞௧ ൫ܥ௜ ∪ ௝ܥ , ௞൯ܥ = 

= ௡೔ା௡ೖே ݀௜௞௧ିଵ(ܥ௜, (௞ܥ + ௡ೕା௡ೖே ݀௜௝௧ି௜൫ܥ௝ , ௞൯ܥ −− ௡ೖே ݀௜௝௧ିଵ൫ܥ௜,  ,௝൯ܥ

(11) 

where ݊௜ , ௝݊  and ݊௞  are cardinalities of i-th, j-th and k-th 

clusters respectively, ݊௜ + ௝݊ + ݊௞ = ܰ; i and j are  selected 

to minimize inter-cluster distance  at iteration t-1: min௜,௝ ݀௜௜௧ିଵ ൫ܥ௜ ,  .௝൯ܥ

By sequentially merging closest clusters, we can build a 
dendrogram, which represents hierarchical relations between 
elements (see Fig. 3). Then, we form resulting clusters by 
setting threshold as a scaled difference of max inter-clusters 
distances: 

 ܶ = ܿ ⋅ max௧ (݀௧ାଵ − ݀௧), (12) 

where ݀௧ is a minimal pairwise distance between clusters at 
iteration t. 

 
Figure 3. Clustering example. Clusters (left) and hierarchical 

dendrogram (right) [10] 

 

The weight for each cluster is set as a sum of the weight of 
cluster members. 

B. Outliers removing 

Unfortunately, it is often the case when not all clusters can 
be enclosed by a constrained rectangular box (see Fig. 4). In 
such cases, we need to leave as maximum information as 
possible, but drop some clusters from being enclosed. The 
following algorithm achieves this. 

First, we sort all of the clusters by distance from the 
weighted mean position: ݀௜ = ඥ(ݔ௜ − ௖)ଶݔ + ௜ݕ) −  ,	௖)ଶݕ

௖ݔ (13) = ଵே ∑ ௜ே௜ୀଵݔ௜ݓ ௖ݕ ,	 = ଵே ∑ ௜ே௜ୀଵݕ௜ݓ , 

where ݓ௜  is a weight of the i-th cluster, ݔ௜ ,  ௜ are coordinatesݕ
of the i-th cluster, N is a total number of clusters. 

Then we repeat the following steps: we select a cluster 
with the minimal value of ݀௜ , remove it from the sorted 
sequence and put it to the output cluster set U. We build a 
minimal-size constrained rectangle around set U. If it is 
possible, we compute values: 

 ܽ = ௤೔௤೔షభ, (14) 

 ܾ = ௦೔௦೔షభ, 

where ݍ௜  is a weight of all clusters within the bounding 
rectangle  (region of interest, ROI) at step i, and ݏ௜ is a ROI 
area at step i. Value a shows a relative increase of weight, and 
b shows a relative increase of ROI area.  

If ROI breaks the constraints, or  
௔௕ < ݐ , where t is a 

predefined threshold, which defines required minimal 
“density” of clusters, we remove the  last added cluster from 
the set U. 

The described approach is illustrated in Fig. 4.  

 
a d

 

b e

 
c f

Figure 4. Outliers removing example: initial setup (a); sequential adding 
closest clusters #1-#3 to the output set (b-d); constraint violation for the 

cluster #4 (e); resulting ROI, enclosing clusters #1-#3 (f). 

Legend: the red box is a current ROI; the pink rectangle is a cluster under 
test; the violet rectangles are objects that will be in the final subset; the 
green rectangles are detected and tracked objects; the blue circle is a 

weighted mean of clusters centers; the green circles are clusters’ centers.  

C. Smooth camera movement emulation 

After the ROI is found, we can use it to emulate the 
operator’s work, and update virtual camera position and 
zooming. 

 To provide a smooth camera movement, we use ROI 
buffering and filtering. 

The buffer stores last M estimated ROIs (we use M=30 in 
our setup). Then, having a current camera rectangle on the i-th 

frame ݎ௖௜ = ௖௜ݔ] , ௖௜ݕ , ௖௜ݓ , ℎ௖௜ ] , we estimate the weight of each 

ROI ݎ௝ in a buffer as an intersection over union (IoU) between 
the camera rectangle and ROI: ݍ௝ = ௥೎೔∩௥ೕ௥೎೔∪௥ೕ	, (15) 

where ݎ௖௜ ∩ ௝ݎ  is an intersection of camera rectangle and j-th 

ROI, and ݎ௖௜ ∪ ௝ݎ  is an intersection between them. 

Then we use ROI with the largest ݍ௝ to update the current 

camera rectangle using alpha-beta filtering independently on 
each rectangle property. This allows changing both the camera 
position and zoom smoothly. We also use thresholds on 
minimal camera position and zoom changes to make camera 
behavior more stable and realistic. 
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V. PRACTICAL REALIZATION AND IMPROVEMENTS 

In practice, computational performance of the proposed 
multiple-object sports tracker, as well as memory 
consumption, are very important. It is especially reasonable 
for embedding devices with low memory and no possibility to 
use high-parallel computations using GPU. To achieve 
reasonable performance, we follow the following rules: 

• minimize the number of operations on images. 
We process images only at the first step 
(detection) for background estimation and blobs 
finding; 

• if possible, downsize images before processing. 
We achieve good tracking quality on images of 
100 px height (with input frames having 4K 
resolution); 

• use simple and fast models. In our tracker we use 
linear objects movement model because of the 
relatively high frame rate compared to object 
speed; 

• avoid the use of image buffers to reduce memory 
consumption. We do not use any image buffers 
in our tracker. The only images that stored in 
memory are low-resolution downsized current 
frame, background, and reweighing coefficients; 

• optimize algorithms where possible to reduce 
memory usage and increase performance. 

Following these rules allowed us to build extremely fast 
sports tracker with camera controller implementation that can 
be used in sport games translations. Our implementation can 
easily process 4K video in real-time on a single core of the i7-
3630QM CPU.  

Algorithms implemented in our sports tracker are general 
and can be applied to different kinds of sports activities, such 
as hockey, soccer, basketball, etc. with only minor changes in 
thresholds (see Fig. 5). 

 
a b 

 
c d 

 
e f 

Figure 5. Examples of estimated camera rectangles for different sports 
activities: hockey (a, b), basketball (c, d) and soccer (e, f)

 

 

 

 

CONCLUSION 

We have described several important aspects required to 
build a multi-object sports tracking system. Outputs of each 
image processing stage were analyzed and discussed. It was 
shown that proper blobs rescaling allows to filter out false 
object detections and keep only useful data. For tracking part, 
we have proposed smart control of the trajectory updates 
giving a way to discard unnecessary tracks. Finally, proper 
utilization of outputs from CV part and combining with virtual 
camera controller provided a smooth real-time picture of 
sports activities with no human operator engagement. 

Proposed sports tracking system has low computational 
and memory requirements and can be applied to various sports 
activities. 
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