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Abstract — 3D mapping techniques have a large variety of 

applications from entertainment to military and medical fields. 
However, there is a big challenge of obtaining well refined 3D 
model from a set of images without usage of depth sensors. In the 
paper, we analyze main components of 3D reconstruction 
pipeline allowing to get detailed models of outdoor objects from 
drones. In particular, we experiment with algorithms required 
for structure from motion and point cloud densification. It is 
demonstrated, that proper local feature extraction, matching and 
verification directly effect on a final model quality. Analysis of 
two existing 3D reconstruction frameworks (MVE and 
COLMAP) is conducted. Initial experimental results are shown. 

Keywords— structure from motion, multiple-view stereo, local 
features, features matching, point cloud. 

I.  INTRODUCTION 
3D mapping is the process of reconstructing 3D surface 

appearance and structure from a set of acquired two-
dimensional images [1]. The input data for 3D reconstruction 
process is typically acquired from various sensors. For 
instance, RGB-D (red-green-blue and depth) which is used in 
Microsoft Kinect [2]. It is applied for extraction the depth from 
both static and dynamic scenes in indoor [3] and outdoor 
environments [4]. Another example of depth sensor is 
Occipital’s structure sensor intended for mobile devices [5]. 

Another type of devices specially designed for capturing 
depth information are time-of-flight (ToF) cameras. 
Comparison of RGB-D and ToF cameras may be found in [6]. 
Fusion of ToF and RGB cameras is implemented in Microsoft 
Kinect v2 [7]. ToF cameras are often used in medicine [8], 
robotics [9], etc.  

One of the challenges in 3D mapping is to obtain well-
refined model using only cheap monocular camera without 
additional equipment like depth sensors or active transmitter. 
This means that there is no initial information about depth [10] 
provided. Despite of high complexity, 3D reconstruction from 
a sequence of optical images has extremely wide range of 
applications [1] mainly due to low cost of such systems. 
Moreover, such algorithms are successfully applied in both 
indoor [11] and outdoor scenes [12]. It is even possible to run 
3D reconstruction directly on a mobile device [13], [14]. 

In this paper, we analyze important steps required for 
computation of 3D model of real objects in outdoor scenes. We 
consider structure-from-motion (SfM) technique, point cloud 
densification step, and additional procedures applied for full 
3D imaging. We demonstrate strong effect of local feature 
extraction and matching schemes not only on initial sparse 
point cloud content, but also on final 3D model quality. Two 
popular frameworks (MVE [15] and COLMAP [16]) are 
comprehensively analyzed for this purpose.  

The rest of the paper is organized as follows. In Section II, 
we explain main principles of sparse point cloud construction 
(SfM) and following densification step. Section III contains 
experimental results and their discussion. 

II. 3D MAPPING PRINCIPLES 
Here we focus on offline 3D reconstruction as a problem of 

obtaining of 3D model from unordered sequence of 2D images 
acquired by drones.  

A. Feature Extraction, Matching and Geometric Verification 
A high-level scheme of 3D reconstruction is shown in 

Fig. 1. Let us discuss it step-by-step. 

In order to match multiple images, various local features are 
utilized. Usage of keypoint descriptors is a common practice 
in computer vision and, in particular, in SfM problems. Such 
algorithms as scale-invariant feature transform (SIFT) [17] 
and speeded-up robust features (SURF) [18] are good tools of 
choice due to high robustness to extremal viewing angles and 
varying illumination.  

After feature extraction step, each image is represented by a 
set of local feature descriptors. Such vectors are matched in 
order to determine their similarity (Fig. 1). The simplest and 
the most complete matching approach is exhaustive or “brute 
force” strategy. In this case, all keypoint descriptors are 
compared one-by-one. This scheme provides good results, but 
it is extremely slow. There are two general ways of making it 
faster: implement matching procedure using hardware 
optimization or to propose alternative efficient matching 
schemes. 
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Fig. 1. 3D mapping pipeline. 

The strategy of matching in MVE includes matching a 
small number of features extracted from low-resolution 
images, forming so-called pre-bundle with image candidates. 
Then full-resolution matching is accomplished. COLMAP is 
designed to process large datasets and provides several several 
matching strategies. Vocabulary tree matching uses pre-
trained vocabulary for determining visually similar images to 
the current one, thus “brute force” feature matching is 
performed only for a limited sub-set. Three pre-trained 
vocabulary trees for different sizes of input dataset (1000, 
10000, and 100000 images) are available, however custom 
vocabulary creation is supported as well. Another approach is 
sequential matching. It is assumes that a set of images is 
ordered, and consecutive frames are overlapped, thus, there is 
a higher probability of visual similarity. The idea of loop 
detection is implemented by matching every N-th image to the 
candidates from the vocabulary tree. Spatial matching utilizes 
global positioning system (GPS) information in order to match 
only images obtained from spatially close locations. Transitive 
matching improves already existing matching graph by 
matching images, connected through the third one.  

Importantly, that matched image pairs are passed through 
the geometric verification (Fig. 2). Different transformations 
are available: homography, essential or fundamental matrix. If 
a valid transformation maps sufficient number of points from 
one image to another with acceptable reprojection error, the 
image pair is considered as geometrically verified. 

 
Fig. 2. Image matching and geometric verification (schematically). 

B. Incremental Sparse Point Cloud Reconstruction 
Both MVE and COLMAP implement the same scheme of 

sparse point cloud reconstruction called incremental SfM. It 
starts from determining an initial image pair. It is a crucial 
step, as the reconstruction may not recover from bad 
initialization. The pair can be chosen automatically 
considering the results of geometric verification, the angle 
between viewing directions and the position of the pair in 
dense part of the correspondences graph. However, there is an 
option of custom initialization as well. Having this pair of 
images, initial 3D points are triangulated (two-view 
reconstruction). After forming initial point cloud, the main 
loop is started. It includes four steps (Fig. 1). 

Image registration represents adding a new image to the 
existing bundle. The optimal selection of an image to be added 
is based on specially developed heuristic algorithms [16]. 
They are based on 2D-3D point correspondences and the 
relations with already registered images. Thus, initial camera 
pose is estimated. Then new the point cloud is extended by 3D 
points triangulation. 

It is important to emphasize, that bundle adjustment (BA) 
is mandatory step. There are two types of commonly applied 
BA algorithms. Local BA starts after each registration and 
affects only 3D points corresponding to the 2D points array 
from the newly added image. Also filtering procedure is 
performed after BA. It is based either on triangulation angle 
and the position in front of the camera (MVE), or additionally 
uses reprojection error value as an indicator (COLMAP). 

Global BA starts after registering a certain number of 
images (10% of all for example) or adding a certain amount of 
3D points into the point cloud. Importantly, that both camera 
intrinsic and extrinsic parameters are refined as well within the 
same pipeline.  

C. Point Cloud Densification 
Point cloud obtained after SfM is quite sparse and not 

enough to build the mesh from it. Densification techniques of 
extending it are a bit different in MVE and COLMAP. MVE 
uses estimation of depth and normals for 3D points to apply 
region growing procedure [19]. The information about depth 
and normals is used as an initial approximation in the point’s 
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neighborhood. An optimization is accomplished through the 
matching with correspondent views. In COLMAP, authors 
solve the problem of estimating the depth map of a reference 
image with given M source images with known homography 
from reference to the source. Generalized expectation 
maximization algorithm (GEM) with estimating the visibility 
distribution and patch-match scheme is applied. COLMAP 
also supports densification of several sparse maps 
simultaneously with subsequent fusion of outputs. 

Dense point cloud is the input data for meshing procedure. 
One of the most popular ideas here is Poisson surface 
reconstruction [20]. Another good idea is combining the 
surface with different scale of mesh depending on the details 
existing in particular regions [21]. Additional mesh filtering is 
an important step, which removes geometrically inconsistent 
planes. Interested reader may find more details in references. 

III. EXPERIMENTAL RESULTS 
The datasets for 3D reconstruction are quite different 

depending on the purpose and creation principles. Eth3D 
provides a number of open indoor and outdoor datasets, 
including raw and undistorted images, and benchmark sparse 
point cloud data [22]. However, each of them contain less than 
100 images, which is not enough for demonstration of some 
specific cases in sparse point cloud reconstruction. Still, we 
used the “facade” dataset containing 76 images for the initial 
comparison of the techniques (Fig. 3a). 

a

    

b

    
Fig. 3. Images from Eth3D facade dataset (a), and building facade 

dataset (b). 

Another dataset we used is a custom one and acquired with 
a drone camera. It also represents building facade and contains 
256 images (Fig. 3b). 

We ran both MVE and COLMAP frameworks on CPU 
Intel Core I5-7600K, 2.8 GHz with 16 Gb RAM and GPU 
GTX 750 Ti 4Gb. MVE was run on CPU only, while 
COLMAP’s feature extraction, matching, and MVS required 
GPU computations. 

We obtained quite similar results on Eath3D’s facade 
dataset (Fig. 4). Though this dataset has only 76 images, it 
provides good coverage of the courtyard of the building and 
strong relations between images. Thus, we obtained quite 
complete sparse point cloud (Fig. 4, up), corresponding dense 
point cloud (Fig. 4, central) and good object shape (Fig. 5, 
down). 

  

  

  
a                                                 b 

Fig. 4. 3D reconstruction results of Eth3D facade dataset by MVE (a) and 
COLMAP (b): sparse point cloud, dense point cloud, 3D model (from up to 

down). 

Our dataset of building facade is much larger. The facade 
was completely covered during acquisition. However, in some 
regions the relation between images is not consistent. The 
repetitive pattern on images is created here not only by small 
bricks, but also by large windows (see Fig. 3 for example), and, 
unlike Eth3D façade, there are only few of good details on 
some images. This leads to the errors of MVE reconstruction 
(Fig. 5). There is only small part of the building represented by 
the sparse cloud (Fig. 5, left). An explanation here is a bad 
selection of image pair for incremental SfM init. Some images 
were registered, but then the relation with others was lost. 
Thus, no camera parameters were estimated for the most of 
images. As a result, we have an incomplete model with some 
artifacts on the top (Fig. 5, right). 

  
Fig. 5. MVE 3D reconstruction results for building facade: sparse point 

cloud and the resulting model. 

As MVE and COLMAP share the same SfM scheme, 
COLMAP has similar reconstruction drawbacks. However, it 
contains two features for handling the above challenge. Firstly, 
it is modified algorithm for initial image pair selection [16]. 
And, most importantly, COLMAP supports reconstruction of 
several sparse point clouds (Fig. 6a demonstrates some 
examples, in general there are 14 models). These models are 
fused within sparse point cloud construction in the case of 
hierarchical scheme of models relation usage. Alternatively, the 
fusion is performed after point cloud densification. 

Fig. 6b (left and central images) demonstrates the 
importance of the prior information for the model quality. 
Model on the left image was obtained, allowing the algorithm 
to refine camera parameters for each image separately. For the 
model from the central image, we set the condition that the 
same camera was used to acquire all images. Both models are 
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complete, but for the left one model fusion was failed, while 
for the right one fusion was successful. 

Right image in Fig. 6b represents the model obtained under 
the same conditions, as the model in central image. For the 
right model, spatial feature matching strategy was used, while 
the left and the central models were obtained with exhaustive 
matching. Spatial matching for this dataset is 4 times faster that 
exhaustive matching. But it leads to missing some matches, 
which results in less complete model. Hence, one should 
carefully use the feature extraction parameters, matching 
modes and reconstruction pipeline for getting acceptable 3D 
model quality. 

a

    

b

    
Fig. 6. COLMAP 3D reconstruction: sparse point clouds (a) and 

reconstruction results (b) 

CONCLUSIONS 
3D reconstruction from a set of optical images is quite a 

challenging problem. We performed comparative analysis of 
two popular frameworks for this purpose. In-depth analysis of 
feature extraction and matching steps was performed. 
Technical requirements in terms of system parameters were 
determined during experiments. Quality of sparse point cloud, 
dense point cloud and final 3D model were compared and 
discussed. It was shown, that a proper 3D mapping system 
configuration provides an acceptable model quality. In the 
near future, we are planning to deploy a fully custom 3D 
pipeline containing the benefits of each of discussed 
framework. 
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