Planar Tracker for Augmented Reality

Planar Tracker for Augmented Reality

Marker-based augmented reality (AR) is extremely popular nowadays. However, full user immersion is possible only in the case of robust real-time computer vision solutions working on the mobile device. We have developed a custom hybrid tracking system based on local feature tracking and template-based matching. The tracking engine tracks the homography changes using optical flow algorithm and then refines the residual warp using the optimized template matcher.

Object Recognition in Radar Images

Object Recognition in Radar Images

Object recognition is an important computer vision and machine learning problem. A particular case is automatic target recognition (ATR) on radar images. In the project, our team has developed a custom classification algorithm based on two different tools. We have been working with MSTAR dataset. This is a public dataset containing ten classes of vehicles with different orientations with 0.3mx0.3m.

Binary Marker Recognition on Raspberry

Binary Marker Recognition on Raspberry

Fiducial markers are widely used in various applications like robot navigation, logistics, augmented reality. Fig. 1. Applications of fiducial markers Advantages are obvious High contrast Simple code generation Resistance to extremal angles However, when we deal with a large number of markers, real-time recognition becomes challenging, especially on embedded devices with low power CPUs on-board.

Indoor Positioning Engine

Indoor Positioning Engine

Indoor positioning systems are becoming popular nowadays. Indeed, there is plenty of opportunities for real-time user navigation in GPS-denied environments. An interesting use cases are as follows: Fig. 1. Indoor navigation use cases There are several options for hardware (see It-Jim blog post). We have developed the positioning algorithm based on cheap Bluetooth beacons and built-in IMU sensors on mobile device.